5,246 research outputs found

    A parameter optimization approach to controller partitioning for integrated flight/propulsion control application

    Get PDF
    A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller

    A novel iterative method to approximate structured singular values

    Full text link
    A novel method for approximating structured singular values (also known as mu-values) is proposed and investigated. These quantities constitute an important tool in the stability analysis of uncertain linear control systems as well as in structured eigenvalue perturbation theory. Our approach consists of an inner-outer iteration. In the outer iteration, a Newton method is used to adjust the perturbation level. The inner iteration solves a gradient system associated with an optimization problem on the manifold induced by the structure. Numerical results and comparison with the well-known Matlab function mussv, implemented in the Matlab Control Toolbox, illustrate the behavior of the method

    Reduced Complexity Filtering with Stochastic Dominance Bounds: A Convex Optimization Approach

    Full text link
    This paper uses stochastic dominance principles to construct upper and lower sample path bounds for Hidden Markov Model (HMM) filters. Given a HMM, by using convex optimization methods for nuclear norm minimization with copositive constraints, we construct low rank stochastic marices so that the optimal filters using these matrices provably lower and upper bound (with respect to a partially ordered set) the true filtered distribution at each time instant. Since these matrices are low rank (say R), the computational cost of evaluating the filtering bounds is O(XR) instead of O(X2). A Monte-Carlo importance sampling filter is presented that exploits these upper and lower bounds to estimate the optimal posterior. Finally, using the Dobrushin coefficient, explicit bounds are given on the variational norm between the true posterior and the upper and lower bounds
    • …
    corecore