149 research outputs found

    Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit

    Get PDF
    The striatum, the principal input structure of the basal ganglia, is crucial to both motor control and learning. It receives convergent input from all over the neocortex, hippocampal formation, amygdala and thalamus, and is the primary recipient of dopamine in the brain. Within the striatum is a GABAergic microcircuit that acts upon these inputs, formed by the dominant medium-spiny projection neurons (MSNs) and fast-spiking interneurons (FSIs). There has been little progress in understanding the computations it performs, hampered by the non-laminar structure that prevents identification of a repeating canonical microcircuit. We here begin the identification of potential dynamically-defined computational elements within the striatum. We construct a new three-dimensional model of the striatal microcircuit's connectivity, and instantiate this with our dopamine-modulated neuron models of the MSNs and FSIs. A new model of gap junctions between the FSIs is introduced and tuned to experimental data. We introduce a novel multiple spike-train analysis method, and apply this to the outputs of the model to find groups of synchronised neurons at multiple time-scales. We find that, with realistic in vivo background input, small assemblies of synchronised MSNs spontaneously appear, consistent with experimental observations, and that the number of assemblies and the time-scale of synchronisation is strongly dependent on the simulated concentration of dopamine. We also show that feed-forward inhibition from the FSIs counter-intuitively increases the firing rate of the MSNs. Such small cell assemblies forming spontaneously only in the absence of dopamine may contribute to motor control problems seen in humans and animals following a loss of dopamine cells. (C) 2009 Elsevier Ltd. All rights reserved

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Bio-mimetic Spiking Neural Networks for unsupervised clustering of spatio-temporal data

    Get PDF
    Spiking neural networks aspire to mimic the brain more closely than traditional artificial neural networks. They are characterised by a spike-like activation function inspired by the shape of an action potential in biological neurons. Spiking networks remain a niche area of research, perform worse than the traditional artificial networks, and their real-world applications are limited. We hypothesised that neuroscience-inspired spiking neural networks with spike-timing-dependent plasticity demonstrate useful learning capabilities. Our objective was to identify features which play a vital role in information processing in the brain but are not commonly used in artificial networks, implement them in spiking networks without copying constraints that apply to living organisms, and to characterise their effect on data processing. The networks we created are not brain models; our approach can be labelled as artificial life. We performed a literature review and selected features such as local weight updates, neuronal sub-types, modularity, homeostasis and structural plasticity. We used the review as a guide for developing the consecutive iterations of the network, and eventually a whole evolutionary developmental system. We analysed the model’s performance on clustering of spatio-temporal data. Our results show that combining evolution and unsupervised learning leads to a faster convergence on the optimal solutions, better stability of fit solutions than each approach separately. The choice of fitness definition affects the network’s performance on fitness-related and unrelated tasks. We found that neuron type-specific weight homeostasis can be used to stabilise the networks, thus enabling longer training. We also demonstrated that networks with a rudimentary architecture can evolve developmental rules which improve their fitness. This interdisciplinary work provides contributions to three fields: it proposes novel artificial intelligence approaches, tests the possible role of the selected biological phenomena in information processing in the brain, and explores the evolution of learning in an artificial life system

    Cortical Network Synchrony Under Applied Electrical Field

    Get PDF
    Synchronous network activity plays a crucial role in complex brain functions. Stimulating the nervous system with applied electric field (EF) is a common tool for probing network responses. We used a gold wire-embedded silk protein film-based interface culture to investigate the effects of applied EFs on random cortical networks of in vitro cultures. Two-week-old cultures were exposed to EF of 27 mV/mm for \u3c1 h and monitored by time-lapse calcium imaging. Network activity was represented by calcium signal time series mapped to source neurons and analyzed by using a community detection algorithm. Cortical cultures exhibited large scale, synchronized oscillations under alternating EF of changing frequencies. Field polarity and frequency change were both found to be necessary for network synchrony, as monophasic pulses of similar frequency changes or EF of a constant frequency failed to induce correlated activities of neurons. Group-specific oscillatory patterns were entrained by network-level synchronous oscillations when the alternating EF frequency was increased from 0.2 Hz to 200 kHz. Binary responses of either activity increase or decrease contributed to the opposite phase patterns of different sub-populations. Conversely, when the EF frequency decreased over the same range span, more complex behavior emerged showing group-specific amplitude and phase patterns. These findings formed the basis of a hypothesized network control mechanism for temporal coordination of distributed neuronal activity, involving coordinated stimulation by alternating polarity, and time delay by change of frequency. These novel EF effects on random neural networks have important implications for brain functional studies and neuromodulation applications

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    Encoding of Motor Behaviors by Cortical Neuronal Networks

    Get PDF
    Performance of motor behavior requires complex coordination of neural activity across diverse regions of cortex at multiples scales. At the level of coordination across large areas of cortex, this activity is thought to be related to similarly broad concepts of movement from goal identification to motor planning to generation of motor commands. At smaller scales on the level of local populations of individual neurons in motor and premotor cortex, we observe complex non-stationary firing patterns that appear to be related to the movement itself. Our understanding of the details of this relationship are incomplete, however. Earlier work by the community largely focused on the analysis of individual units in isolation. Technological advances and changes in experimental paradigms have led to the simultaneous recording of hundreds of neurons simultaneously. From an analysis standpoint, we are observing a similar shift in focus from the individual neuron to the population as a whole. This dissertation investigates encoding and decoding techniques that handle time-varying neuronal activity from within the context of a reach-to-grasp task. The first part of this work investigates the dynamics of neural coding of reach and grasp through a series of temporally localized classifiers. The second part of this thesis proposes a semi-supervised learning approach to identifying task relevant neurons for classification purposes and for identifying communities of neurons that co-modulate their activity in correlation to a common external variable. The third part of this work proposes and demonstrates an approach to modeling the firing of individual neurons as a weighted combination of other neurons with weighting dependent on the task being performed

    Metastability: an emergent phenomenon in networks of spiking neurons

    No full text
    It is widely recognised that different brain areas perform different specialised functions. However, it remains an open question how different brain areas coordinate with each other and give rise to global brain states and high-level cognition. Recent theories suggest that transient periods of synchronisation and desynchronisation provide a mechanism for dynamically integrating and forming coalitions of functionally related neural areas, and that at these times conditions are optimal for information transfer. Empirical evidence from human resting state networks has shown a tendency for multiple brain areas to synchronise for short amounts of time, and for different synchronous groups to appear at different times. In dynamical systems terms, this behaviour resembles metastability — an intrinsically driven movement between transient, attractor-like states. However, it remains an open question what the underlying mechanism is that gives rise to these observed phenomena. The thesis first establishes that oscillating neural populations display a great amount of spectral complexity, with several rhythms temporally coexisting in the same and different structures. The thesis next explores inter-band frequency modulation between neural oscillators. The results show that oscillations in different neural populations, and in different frequency bands, modulate each other so as to change frequency. Further to this, the interaction of these fluctuating frequencies in the network as a whole is able to drive different neural populations towards episodes of synchrony. Finally, a symbiotic relationship between metastability and underlying network structure is elucidated, in which the presence of plasticity, responding to the interactions between different neural areas, will naturally form modular small-world networks that in turn further promote metastability. This seemingly inevitable drive towards metastabilty in simulation suggests that it should also be present in biological brains. The conclusion drawn is that these key network characteristics, and the metastable dynamics they promote, facilitate versatile exploration, integration, and communication between functionally related neural areas, and thereby support sophisticated cognitive processing in the brain.Open Acces

    Cortical Network Synchrony Under Applied Electrical Field in vitro

    Get PDF
    Synchronous network activity plays a crucial role in complex brain functions. Stimulating the nervous system with applied electric field (EF) is a common tool for probing network responses. We used a gold wire-embedded silk protein film-based interface culture to investigate the effects of applied EFs on random cortical networks of in vitro cultures. Two-week-old cultures were exposed to EF of 27 mV/mm for <1 h and monitored by time-lapse calcium imaging. Network activity was represented by calcium signal time series mapped to source neurons and analyzed by using a community detection algorithm. Cortical cultures exhibited large scale, synchronized oscillations under alternating EF of changing frequencies. Field polarity and frequency change were both found to be necessary for network synchrony, as monophasic pulses of similar frequency changes or EF of a constant frequency failed to induce correlated activities of neurons. Group-specific oscillatory patterns were entrained by network-level synchronous oscillations when the alternating EF frequency was increased from 0.2 Hz to 200 kHz. Binary responses of either activity increase or decrease contributed to the opposite phase patterns of different sub-populations. Conversely, when the EF frequency decreased over the same range span, more complex behavior emerged showing group-specific amplitude and phase patterns. These findings formed the basis of a hypothesized network control mechanism for temporal coordination of distributed neuronal activity, involving coordinated stimulation by alternating polarity, and time delay by change of frequency. These novel EF effects on random neural networks have important implications for brain functional studies and neuromodulation applications

    Tremotopic mapping of the human thalamic reticular nucleus

    Get PDF
    The thalamic reticular nucleus is an important structure in the mammalian brain, participating in the coordination of large-scale processes such as sleep and attention. To date, this structure has not been investigated in the human brain. I developed a series of methods for anatomically and functionally localizing the visual regions of the thalamic reticular nucleus in the human brain using magnetic resonance imaging and the presentation of various flicker frequencies. First, I describe the results obtained from a modified retinotopy analysis. I next apply network theory to the data in an attempt to localize the TRN is a data-driven way. Third, I describe a lateral-inhibitory network the TRN participates in. I conclude the TRN plays a role in regulating interhemispheric activity in the brain, and that flicker can be used to probe the resonance properties of neural populations with magnetic resonance imaging
    • …
    corecore