1,134 research outputs found

    On the Hardness of Entropy Minimization and Related Problems

    Full text link
    We investigate certain optimization problems for Shannon information measures, namely, minimization of joint and conditional entropies H(X,Y)H(X,Y), H(XY)H(X|Y), H(YX)H(Y|X), and maximization of mutual information I(X;Y)I(X;Y), over convex regions. When restricted to the so-called transportation polytopes (sets of distributions with fixed marginals), very simple proofs of NP-hardness are obtained for these problems because in that case they are all equivalent, and their connection to the well-known \textsc{Subset sum} and \textsc{Partition} problems is revealed. The computational intractability of the more general problems over arbitrary polytopes is then a simple consequence. Further, a simple class of polytopes is shown over which the above problems are not equivalent and their complexity differs sharply, namely, minimization of H(X,Y)H(X,Y) and H(YX)H(Y|X) is trivial, while minimization of H(XY)H(X|Y) and maximization of I(X;Y)I(X;Y) are strongly NP-hard problems. Finally, two new (pseudo)metrics on the space of discrete probability distributions are introduced, based on the so-called variation of information quantity, and NP-hardness of their computation is shown.Comment: IEEE Information Theory Workshop (ITW) 201

    A branch, price, and cut approach to solving the maximum weighted independent set problem

    Get PDF
    The maximum weight-independent set problem (MWISP) is one of the most well-known and well-studied NP-hard problems in the field of combinatorial optimization. In the first part of the dissertation, I explore efficient branch-and-price (B&P) approaches to solve MWISP exactly. B&P is a useful integer-programming tool for solving NP-hard optimization problems. Specifically, I look at vertex- and edge-disjoint decompositions of the underlying graph. MWISPâÂÂs on the resulting subgraphs are less challenging, on average, to solve. I use the B&P framework to solve MWISP on the original graph G using these specially constructed subproblems to generate columns. I demonstrate that vertex-disjoint partitioning scheme gives an effective approach for relatively sparse graphs. I also show that the edge-disjoint approach is less effective than the vertex-disjoint scheme because the associated DWD reformulation of the latter entails a slow rate of convergence. In the second part of the dissertation, I address convergence properties associated with Dantzig-Wolfe Decomposition (DWD). I discuss prevalent methods for improving the rate of convergence of DWD. I also implement specific methods in application to the edge-disjoint B&P scheme and show that these methods improve the rate of convergence. In the third part of the dissertation, I focus on identifying new cut-generation methods within the B&P framework. Such methods have not been explored in the literature. I present two new methodologies for generating generic cutting planes within the B&P framework. These techniques are not limited to MWISP and can be used in general applications of B&P. The first methodology generates cuts by identifying faces (facets) of subproblem polytopes and lifting associated inequalities; the second methodology computes Lift-and-Project (L&P) cuts within B&P. I successfully demonstrate the feasibility of both approaches and present preliminary computational tests of each

    A non-partitionable Cohen-Macaulay simplicial complex

    Get PDF
    A long-standing conjecture of Stanley states that every Cohen-Macaulay simplicial complex is partitionable. We disprove the conjecture by constructing an explicit counterexample. Due to a result of Herzog, Jahan and Yassemi, our construction also disproves the conjecture that the Stanley depth of a monomial ideal is always at least its depth.Comment: Final version. 13 pages, 2 figure

    Hidden Vertices in Extensions of Polytopes

    Full text link
    Some widely known compact extended formulations have the property that each vertex of the corresponding extension polytope is projected onto a vertex of the target polytope. In this paper, we prove that for heptagons with vertices in general position none of the minimum size extensions has this property. Additionally, for any d >= 2 we construct a family of d-polytopes such that at least 1/9 of all vertices of any of their minimum size extensions is not projected onto vertices.Comment: 9 pages, to appear in: Operations Research Letter
    corecore