61 research outputs found

    The three-dimensional art gallery problem and its solutions

    Get PDF
    This thesis addressed the three-dimensional Art Gallery Problem (3D-AGP), a version of the art gallery problem, which aims to determine the number of guards required to cover the interior of a pseudo-polyhedron as well as the placement of these guards. This study exclusively focused on the version of the 3D-AGP in which the art gallery is modelled by an orthogonal pseudo-polyhedron, instead of a pseudo-polyhedron. An orthogonal pseudopolyhedron provides a simple yet effective model for an art gallery because of the fact that most real-life buildings and art galleries are largely orthogonal in shape. Thus far, the existing solutions to the 3D-AGP employ mobile guards, in which each mobile guard is allowed to roam over an entire interior face or edge of a simple orthogonal polyhedron. In many realword applications including the monitoring an art gallery, mobile guards are not always adequate. For instance, surveillance cameras are usually installed at fixed locations. The guard placement method proposed in this thesis addresses such limitations. It uses fixedpoint guards inside an orthogonal pseudo-polyhedron. This formulation of the art gallery problem is closer to that of the classical art gallery problem. The use of fixed-point guards also makes our method applicable to wider application areas. Furthermore, unlike the existing solutions which are only applicable to simple orthogonal polyhedra, our solution applies to orthogonal pseudo-polyhedra, which is a super-class of simple orthogonal polyhedron. In this thesis, a general solution to the guard placement problem for 3D-AGP on any orthogonal pseudo-polyhedron has been presented. This method is the first solution known so far to fixed-point guard placement for orthogonal pseudo-polyhedron. Furthermore, it has been shown that the upper bound for the number of fixed-point guards required for covering any orthogonal polyhedron having n vertices is (n3/2), which is the lowest upper bound known so far for the number of fixed-point guards for any orthogonal polyhedron. This thesis also provides a new way to characterise the type of a vertex in any orthogonal pseudo-polyhedron and has conjectured a quantitative relationship between the numbers of vertices with different vertex configurations in any orthogonal pseudo-polyhedron. This conjecture, if proved to be true, will be useful for gaining insight into the structure of any orthogonal pseudo-polyhedron involved in many 3-dimensional computational geometrical problems. Finally the thesis has also described a new method for splitting orthogonal polygon iv using a polyline and a new method for splitting an orthogonal polyhedron using a polyplane. These algorithms are useful in applications such as metal fabrication

    Algorithms for Art Gallery Problems

    Get PDF

    Conflict-Free Chromatic Art Gallery Coverage

    Get PDF
    We consider a chromatic variant of the art gallery problem, where each guard is assigned one of k distinct colors. A placement of such colored guards is conflict-free if each point of the polygon is seen by some guard whose color appears exactly once among the guards visible to that point. What is the smallest number k(n) of colors that ensure a conflict-free covering of all n-vertex polygons? We call this the conflict-free chromatic art gallery problem. Our main result shows that k(n) is O(logn) for orthogonal and for monotone polygons, and O(log2 n) for arbitrary simple polygons. By contrast, if all guards visible from each point must have distinct colors, then k(n) is Ω(n) for arbitrary simple polygons, as shown by Erickson and LaValle (Robotics: Science and Systems, vol.VII, pp.81-88, 2012). The problem is motivated by applications in distributed robotics and wireless sensor networks but is also of interest from a theoretical point of view

    Decomposing and packing polygons / Dania el-Khechen.

    Get PDF
    In this thesis, we study three different problems in the field of computational geometry: the partitioning of a simple polygon into two congruent components, the partitioning of squares and rectangles into equal area components while minimizing the perimeter of the cuts, and the packing of the maximum number of squares in an orthogonal polygon. To solve the first problem, we present three polynomial time algorithms which given a simple polygon P partitions it, if possible, into two congruent and possibly nonsimple components P 1 and P 2 : an O ( n 2 log n ) time algorithm for properly congruent components and an O ( n 3 ) time algorithm for mirror congruent components. In our analysis of the second problem, we experimentally find new bounds on the optimal partitions of squares and rectangles into equal area components. The visualization of the best determined solutions allows us to conjecture some characteristics of a class of optimal solutions. Finally, for the third problem, we present three linear time algorithms for packing the maximum number of unit squares in three subclasses of orthogonal polygons: the staircase polygons, the pyramids and Manhattan skyline polygons. We also study a special case of the problem where the given orthogonal polygon has vertices with integer coordinates and the squares to pack are (2 {604} 2) squares. We model the latter problem with a binary integer program and we develop a system that produces and visualizes optimal solutions. The observation of such solutions aided us in proving some characteristics of a class of optimal solutions
    • …
    corecore