3,802 research outputs found

    Effective partitioning method for computing weighted Moore-Penrose inverse

    Get PDF
    We introduce a method and an algorithm for computing the weighted Moore-Penrose inverse of multiple-variable polynomial matrix and the related algorithm which is appropriated for sparse polynomial matrices. These methods and algorithms are generalizations of algorithms developed in [M.B. Tasic, P.S. Stanimirovic, M.D. Petkovic, Symbolic computation of weighted Moore-Penrose inverse using partitioning method, Appl. Math. Comput. 189 (2007) 615-640] to multiple-variable rational and polynomial matrices and improvements of these algorithms on sparse matrices. Also, these methods are generalizations of the partitioning method for computing the Moore-Penrose inverse of rational and polynomial matrices introduced in [P.S. Stanimirovic, M.B. Tasic, Partitioning method for rational and polynomial matrices, Appl. Math. Comput. 155 (2004) 137-163; M.D. Petkovic, P.S. Stanimirovic, Symbolic computation of the Moore-Penrose inverse using partitioning method, Internat. J. Comput. Math. 82 (2005) 355-367] to the case of weighted Moore-Penrose inverse. Algorithms are implemented in the symbolic computational package MATHEMATICA

    Computing generalized inverses using LU factorization of matrix product

    Full text link
    An algorithm for computing {2, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4} -inverses and the Moore-Penrose inverse of a given rational matrix A is established. Classes A(2, 3)s and A(2, 4)s are characterized in terms of matrix products (R*A)+R* and T*(AT*)+, where R and T are rational matrices with appropriate dimensions and corresponding rank. The proposed algorithm is based on these general representations and the Cholesky factorization of symmetric positive matrices. The algorithm is implemented in programming languages MATHEMATICA and DELPHI, and illustrated via examples. Numerical results of the algorithm, corresponding to the Moore-Penrose inverse, are compared with corresponding results obtained by several known methods for computing the Moore-Penrose inverse

    Polynomial Interrupt Timed Automata

    Full text link
    Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where reachability and some variants of timed model checking are decidable even in presence of parameters. They are well suited to model and analyze real-time operating systems. Here we extend ITA with polynomial guards and updates, leading to the class of polynomial ITA (PolITA). We prove the decidability of the reachability and model checking of a timed version of CTL by an adaptation of the cylindrical decomposition method for the first-order theory of reals. Compared to previous approaches, our procedure handles parameters and clocks in a unified way. Moreover, we show that PolITA are incomparable with stopwatch automata. Finally additional features are introduced while preserving decidability

    Invariant Generation through Strategy Iteration in Succinctly Represented Control Flow Graphs

    Full text link
    We consider the problem of computing numerical invariants of programs, for instance bounds on the values of numerical program variables. More specifically, we study the problem of performing static analysis by abstract interpretation using template linear constraint domains. Such invariants can be obtained by Kleene iterations that are, in order to guarantee termination, accelerated by widening operators. In many cases, however, applying this form of extrapolation leads to invariants that are weaker than the strongest inductive invariant that can be expressed within the abstract domain in use. Another well-known source of imprecision of traditional abstract interpretation techniques stems from their use of join operators at merge nodes in the control flow graph. The mentioned weaknesses may prevent these methods from proving safety properties. The technique we develop in this article addresses both of these issues: contrary to Kleene iterations accelerated by widening operators, it is guaranteed to yield the strongest inductive invariant that can be expressed within the template linear constraint domain in use. It also eschews join operators by distinguishing all paths of loop-free code segments. Formally speaking, our technique computes the least fixpoint within a given template linear constraint domain of a transition relation that is succinctly expressed as an existentially quantified linear real arithmetic formula. In contrast to previously published techniques that rely on quantifier elimination, our algorithm is proved to have optimal complexity: we prove that the decision problem associated with our fixpoint problem is in the second level of the polynomial-time hierarchy.Comment: 35 pages, conference version published at ESOP 2011, this version is a CoRR version of our submission to Logical Methods in Computer Scienc

    Efficient solution of parabolic equations by Krylov approximation methods

    Get PDF
    Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms
    corecore