510 research outputs found

    Partitioning chordal graphs into independent sets and cliques

    Get PDF
    We consider the following generalization of split graphs: A graph is said to be a (k,ℓ)-graph if its vertex set can be partitioned into k independent sets and ℓ cliques. (Split graphs are obtained by setting k=ℓ=1.) Much of the appeal of split graphs is due to the fact that they are chordal, a property not shared by (k,ℓ)-graphs in general. (For instance, being a (k,0)-graph is equivalent to being k-colourable.) However, if we keep the assumption of chordality, nice algorithms and characterization theorems are possible. Indeed, our main result is a forbidden subgraph characterization of chordal (k,ℓ)-graphs. We also give an O(n(m+n)) recognition algorithm for chordal (k,ℓ)-graphs. When k=1, our algorithm runs in time O(m+n). In particular, we obtain a new simple and efficient greedy algorithm for the recognition of split graphs, from which it is easy to derive the well known forbidden subgraph characterization of split graphs. The algorithm and the characterization extend, in a natural way, to the ‘list’ (or ‘pre-colouring extension’) version of the split partition problem — given a graph with some vertices pre-assigned to the independent set, or to the clique, is there a split partition extending this pre-assignment? Another way to think of our main result is the following min-max property of chordal graphs: the maximum number of independent (i.e., disjoint and nonadjacent) Kr's equals the minimum number of cliques that meet all Kr's

    Parameterized Complexity of Equitable Coloring

    Full text link
    A graph on nn vertices is equitably kk-colorable if it is kk-colorable and every color is used either n/k\left\lfloor n/k \right\rfloor or n/k\left\lceil n/k \right\rceil times. Such a problem appears to be considerably harder than vertex coloring, being NP-Complete\mathsf{NP\text{-}Complete} even for cographs and interval graphs. In this work, we prove that it is W[1]-Hard\mathsf{W[1]\text{-}Hard} for block graphs and for disjoint union of split graphs when parameterized by the number of colors; and W[1]-Hard\mathsf{W[1]\text{-}Hard} for K1,4K_{1,4}-free interval graphs when parameterized by treewidth, number of colors and maximum degree, generalizing a result by Fellows et al. (2014) through a much simpler reduction. Using a previous result due to Dominique de Werra (1985), we establish a dichotomy for the complexity of equitable coloring of chordal graphs based on the size of the largest induced star. Finally, we show that \textsc{equitable coloring} is FPT\mathsf{FPT} when parameterized by the treewidth of the complement graph

    Some results on triangle partitions

    Full text link
    We show that there exist efficient algorithms for the triangle packing problem in colored permutation graphs, complete multipartite graphs, distance-hereditary graphs, k-modular permutation graphs and complements of k-partite graphs (when k is fixed). We show that there is an efficient algorithm for C_4-packing on bipartite permutation graphs and we show that C_4-packing on bipartite graphs is NP-complete. We characterize the cobipartite graphs that have a triangle partition

    Finding Biclique Partitions of Co-Chordal Graphs

    Full text link
    The biclique partition number (bp)(\text{bp}) of a graph GG is referred to as the least number of complete bipartite (biclique) subgraphs that are required to cover the edges of the graph exactly once. In this paper, we show that the biclique partition number (bp\text{bp}) of a co-chordal (complementary graph of chordal) graph G=(V,E)G = (V, E) is less than the number of maximal cliques (mc\text{mc}) of its complementary graph: a chordal graph Gc=(V,Ec)G^c = (V, E^c). We first provide a general framework of the ``divide and conquer" heuristic of finding minimum biclique partitions of co-chordal graphs based on clique trees. Furthermore, a heuristic of complexity O[V(V+Ec)]O[|V|(|V|+|E^c|)] is proposed by applying lexicographic breadth-first search to find structures called moplexes. Either heuristic gives us a biclique partition of GG with size mc(Gc)1\text{mc}(G^c)-1. In addition, we prove that both of our heuristics can solve the minimum biclique partition problem on GG exactly if its complement GcG^c is chordal and clique vertex irreducible. We also show that mc(Gc)2bp(G)mc(Gc)1\text{mc}(G^c) - 2 \leq \text{bp}(G) \leq \text{mc}(G^c) - 1 if GG is a split graph

    Clique trees of infinite locally finite chordal graphs

    Get PDF
    We investigate clique trees of infinite locally finite chordal graphs. Our main contribution is a bijection between the set of clique trees and the product of local finite families of finite trees. Even more, the edges of a clique tree are in bijection with the edges of the corresponding collection of finite trees. This allows us to enumerate the clique trees of a chordal graph and extend various classic characterisations of clique trees to the infinite setting

    Problems and memories

    Full text link
    I state some open problems coming from joint work with Paul Erd\H{o}sComment: This is a paper form of the talk I gave on July 5, 2013 at the centennial conference in Budapest to honor Paul Erd\H{o}

    Graph classes and forbidden patterns on three vertices

    Full text link
    This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.Comment: Third version version. 38 page

    Exploring Subexponential Parameterized Complexity of Completion Problems

    Get PDF
    Let F{\cal F} be a family of graphs. In the F{\cal F}-Completion problem, we are given a graph GG and an integer kk as input, and asked whether at most kk edges can be added to GG so that the resulting graph does not contain a graph from F{\cal F} as an induced subgraph. It appeared recently that special cases of F{\cal F}-Completion, the problem of completing into a chordal graph known as Minimum Fill-in, corresponding to the case of F={C4,C5,C6,}{\cal F}=\{C_4,C_5,C_6,\ldots\}, and the problem of completing into a split graph, i.e., the case of F={C4,2K2,C5}{\cal F}=\{C_4, 2K_2, C_5\}, are solvable in parameterized subexponential time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})}n^{O(1)}. The exploration of this phenomenon is the main motivation for our research on F{\cal F}-Completion. In this paper we prove that completions into several well studied classes of graphs without long induced cycles also admit parameterized subexponential time algorithms by showing that: - The problem Trivially Perfect Completion is solvable in parameterized subexponential time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})}n^{O(1)}, that is F{\cal F}-Completion for F={C4,P4}{\cal F} =\{C_4, P_4\}, a cycle and a path on four vertices. - The problems known in the literature as Pseudosplit Completion, the case where F={2K2,C4}{\cal F} = \{2K_2, C_4\}, and Threshold Completion, where F={2K2,P4,C4}{\cal F} = \{2K_2, P_4, C_4\}, are also solvable in time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})} n^{O(1)}. We complement our algorithms for F{\cal F}-Completion with the following lower bounds: - For F={2K2}{\cal F} = \{2K_2\}, F={C4}{\cal F} = \{C_4\}, F={P4}{\cal F} = \{P_4\}, and F={2K2,P4}{\cal F} = \{2K_2, P_4\}, F{\cal F}-Completion cannot be solved in time 2o(k)nO(1)2^{o(k)} n^{O(1)} unless the Exponential Time Hypothesis (ETH) fails. Our upper and lower bounds provide a complete picture of the subexponential parameterized complexity of F{\cal F}-Completion problems for F{2K2,C4,P4}{\cal F}\subseteq\{2K_2, C_4, P_4\}.Comment: 32 pages, 16 figures, A preliminary version of this paper appeared in the proceedings of STACS'1
    corecore