4,285 research outputs found

    A Partitioning Algorithm for Maximum Common Subgraph Problems

    Get PDF
    We introduce a new branch and bound algorithm for the maximum common subgraph and maximum common connected subgraph problems which is based around vertex labelling and partitioning. Our method in some ways resembles a traditional constraint programming approach, but uses a novel compact domain store and supporting inference algorithms which dramatically reduce the memory and computation requirements during search, and allow better dual viewpoint ordering heuristics to be calculated cheaply. Experiments show a speedup of more than an order of magnitude over the state of the art, and demonstrate that we can operate on much larger graphs without running out of memory

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference

    VoG: Summarizing and Understanding Large Graphs

    Get PDF
    How can we succinctly describe a million-node graph with a few simple sentences? How can we measure the "importance" of a set of discovered subgraphs in a large graph? These are exactly the problems we focus on. Our main ideas are to construct a "vocabulary" of subgraph-types that often occur in real graphs (e.g., stars, cliques, chains), and from a set of subgraphs, find the most succinct description of a graph in terms of this vocabulary. We measure success in a well-founded way by means of the Minimum Description Length (MDL) principle: a subgraph is included in the summary if it decreases the total description length of the graph. Our contributions are three-fold: (a) formulation: we provide a principled encoding scheme to choose vocabulary subgraphs; (b) algorithm: we develop \method, an efficient method to minimize the description cost, and (c) applicability: we report experimental results on multi-million-edge real graphs, including Flickr and the Notre Dame web graph.Comment: SIAM International Conference on Data Mining (SDM) 201

    PT-Scotch: A tool for efficient parallel graph ordering

    Get PDF
    The parallel ordering of large graphs is a difficult problem, because on the one hand minimum degree algorithms do not parallelize well, and on the other hand the obtainment of high quality orderings with the nested dissection algorithm requires efficient graph bipartitioning heuristics, the best sequential implementations of which are also hard to parallelize. This paper presents a set of algorithms, implemented in the PT-Scotch software package, which allows one to order large graphs in parallel, yielding orderings the quality of which is only slightly worse than the one of state-of-the-art sequential algorithms. Our implementation uses the classical nested dissection approach but relies on several novel features to solve the parallel graph bipartitioning problem. Thanks to these improvements, PT-Scotch produces consistently better orderings than ParMeTiS on large numbers of processors
    • …
    corecore