58 research outputs found

    An optimal scheduling scheme for tiling in distributed systems

    Full text link

    Multi-dimensional dynamic loop scheduling algorithms

    Full text link

    Designing a scalable dynamic load -balancing algorithm for pipelined single program multiple data applications on a non-dedicated heterogeneous network of workstations

    Get PDF
    Dynamic load balancing strategies have been shown to be the most critical part of an efficient implementation of various applications on large distributed computing systems. The need for dynamic load balancing strategies increases when the underlying hardware is a non-dedicated heterogeneous network of workstations (HNOW). This research focuses on the single program multiple data (SPMD) programming model as it has been extensively used in parallel programming for its simplicity and scalability in terms of computational power and memory size.;This dissertation formally defines and addresses the problem of designing a scalable dynamic load-balancing algorithm for pipelined SPMD applications on non-dedicated HNOW. During this process, the HNOW parameters, SPMD application characteristics, and load-balancing performance parameters are identified.;The dissertation presents a taxonomy that categorizes general load balancing algorithms and a methodology that facilitates creating new algorithms that can harness the HNOW computing power and still preserve the scalability of the SPMD application.;The dissertation devises a new algorithm, DLAH (Dynamic Load-balancing Algorithm for HNOW). DLAH is based on a modified diffusion technique, which incorporates the HNOW parameters. Analytical performance bound for the worst-case scenario of the diffusion technique has been derived.;The dissertation develops and utilizes an HNOW simulation model to conduct extensive simulations. These simulations were used to validate DLAH and compare its performance to related dynamic algorithms. The simulations results show that DLAH algorithm is scalable and performs well for both homogeneous and heterogeneous networks. Detailed sensitivity analysis was conducted to study the effects of key parameters on performance

    The ParaPhrase project : parallel patterns for adaptive heterogeneous multicore systems

    Get PDF
    Funding: This work has been supported by the European Union Framework 7 grant IST-2011-288570 “ParaPhrase: Parallel Patterns for Adaptive Heterogeneous Multicore Systems”This paper describes the ParaPhrase project, a new 3-year targeted research project funded under EU Framework 7 Objective 3.4 (Computer Systems) , starting in October 2011. ParaPhrase aims to follow a new approach to introducing parallelism using advanced refactoring techniques coupled with high-level parallel design patterns. The refactoring approach will use these design patterns to restructure programs defined as networks of software components into other forms that are more suited to parallel execution. The programmer will be aided by high-level cost information that will be integrated into the refactoring tools. The implementation of these patterns will then use a well-understood algorithmic skeleton approach to achieve good parallelism. A key ParaPhrase design goal is that parallel components are intended to match heterogeneous architectures, defined in terms of CPU/GPU combinations, for example. In order to achieve this, the ParaPhrase approach will map components at link time to the available hardware, and will then re-map them during program execution, taking account of multiple applications, changes in hardware resource availability, the desire to reduce communication costs etc. In this way, we aim to develop a new approach to programming that will be able to produce software that can adapt to dynamic changes in the system environment. Moreover, by using a strong component basis for parallelism, we can achieve potentially significant gains in terms of reducing sharing at a high level of abstraction, and so in reducing or even eliminating the costs that are usually associated with cache management, locking, and synchronisation.Postprin

    Analytical Modeling of High Performance Reconfigurable Computers: Prediction and Analysis of System Performance.

    Get PDF
    The use of a network of shared, heterogeneous workstations each harboring a Reconfigurable Computing (RC) system offers high performance users an inexpensive platform for a wide range of computationally demanding problems. However, effectively using the full potential of these systems can be challenging without the knowledge of the system’s performance characteristics. While some performance models exist for shared, heterogeneous workstations, none thus far account for the addition of Reconfigurable Computing systems. This dissertation develops and validates an analytic performance modeling methodology for a class of fork-join algorithms executing on a High Performance Reconfigurable Computing (HPRC) platform. The model includes the effects of the reconfigurable device, application load imbalance, background user load, basic message passing communication, and processor heterogeneity. Three fork-join class of applications, a Boolean Satisfiability Solver, a Matrix-Vector Multiplication algorithm, and an Advanced Encryption Standard algorithm are used to validate the model with homogeneous and simulated heterogeneous workstations. A synthetic load is used to validate the model under various loading conditions including simulating heterogeneity by making some workstations appear slower than others by the use of background loading. The performance modeling methodology proves to be accurate in characterizing the effects of reconfigurable devices, application load imbalance, background user load and heterogeneity for applications running on shared, homogeneous and heterogeneous HPRC resources. The model error in all cases was found to be less than five percent for application runtimes greater than thirty seconds and less than fifteen percent for runtimes less than thirty seconds. The performance modeling methodology enables us to characterize applications running on shared HPRC resources. Cost functions are used to impose system usage policies and the results of vii the modeling methodology are utilized to find the optimal (or near-optimal) set of workstations to use for a given application. The usage policies investigated include determining the computational costs for the workstations and balancing the priority of the background user load with the parallel application. The applications studied fall within the Master-Worker paradigm and are well suited for a grid computing approach. A method for using NetSolve, a grid middleware, with the model and cost functions is introduced whereby users can produce optimal workstation sets and schedules for Master-Worker applications running on shared HPRC resources

    Low-Power Embedded Design Solutions and Low-Latency On-Chip Interconnect Architecture for System-On-Chip Design

    Get PDF
    This dissertation presents three design solutions to support several key system-on-chip (SoC) issues to achieve low-power and high performance. These are: 1) joint source and channel decoding (JSCD) schemes for low-power SoCs used in portable multimedia systems, 2) efficient on-chip interconnect architecture for massive multimedia data streaming on multiprocessor SoCs (MPSoCs), and 3) data processing architecture for low-power SoCs in distributed sensor network (DSS) systems and its implementation. The first part includes a low-power embedded low density parity check code (LDPC) - H.264 joint decoding architecture to lower the baseband energy consumption of a channel decoder using joint source decoding and dynamic voltage and frequency scaling (DVFS). A low-power multiple-input multiple-output (MIMO) and H.264 video joint detector/decoder design that minimizes energy for portable, wireless embedded systems is also designed. In the second part, a link-level quality of service (QoS) scheme using unequal error protection (UEP) for low-power network-on-chip (NoC) and low latency on-chip network designs for MPSoCs is proposed. This part contains WaveSync, a low-latency focused network-on-chip architecture for globally-asynchronous locally-synchronous (GALS) designs and a simultaneous dual-path routing (SDPR) scheme utilizing path diversity present in typical mesh topology network-on-chips. SDPR is akin to having a higher link width but without the significant hardware overhead associated with simple bus width scaling. The last part shows data processing unit designs for embedded SoCs. We propose a data processing and control logic design for a new radiation detection sensor system generating data at or above Peta-bits-per-second level. Implementation results show that the intended clock rate is achieved within the power target of less than 200mW. We also present a digital signal processing (DSP) accelerator supporting configurable MAC, FFT, FIR, and 3-D cross product operations for embedded SoCs. It consumes 12.35mW along with 0.167mm2 area at 333MHz

    Automatic Parallelization of Tiled Stencil Loop Nests on GPUs

    Full text link
    This thesis attempts to design and implement a compiler framework based on the polyhedral model. The compiler automatically parallelizes loop nests; especially stencil kernels, into efficient GPU code by loop tiling transformations which the polyhedral model describes. To enhance parallel performance, we introduce three practically efficient techniques to process different types of loop nests. The experimental results of our compiler framework have demonstrated that these advanced techniques can outperform previous approaches. Firstly, we aim to find efficient tiling transformations without violating data dependences. How to select a tile's shape and size is an open issue that is performance-critical and influenced by GPU's hardware constraints. We propose an approach to determine the tile shapes out of consideration for improving two-level parallelism of GPUs. The new approach finds appropriate tiling hyperplanes by embedding parallelism-enhancing constraints into the polyhedral model to maximize intra-tile, i.e., intra-SM parallelism. This improves the load balance among the streaming processors (SPs), which execute a wavefront of loop iterations within a tile. We eliminate parallelism-hindering false dependences to optimize inter-tile, i.e., inter-SM parallelism. This improves the load balance among the streaming multiprocessors (SMs), which execute a wavefront of tiles. Furthermore, to avoid combinatorial explosion of tile size's configurations, we present a model-driven approach to automating tile size selection that is performance-critical for loop tiling transformations, especially for DOACROSS loop nests. Our tile size selection model accurately estimates the execution times of tiled loop nests running on GPUs. The selected tile sizes lead to the performance results that are close to the best observed for a range of problem sizes tested. Finally, to address the difficulty and low-performance of parallelizing widely used SOR stencil loop nests, we present a new tiled parallel SOR method, called MLSOR, which admits more efficient data-parallel SIMD execution on GPUs. Unlike the previous two approaches that are dependence-preserving, the basic idea is to algorithmically restructure a stencil kernel based on a non-dependence-preserving parallelization scheme to avoid pipelining for higher parallelism. The new approach can be implemented in compilers through a pattern matching pass to optimize SOR-like DOACROSS loop nests on GPUs

    GPRM: a high performance programming framework for manycore processors

    Get PDF
    Processors with large numbers of cores are becoming commonplace. In order to utilise the available resources in such systems, the programming paradigm has to move towards increased parallelism. However, increased parallelism does not necessarily lead to better performance. Parallel programming models have to provide not only flexible ways of defining parallel tasks, but also efficient methods to manage the created tasks. Moreover, in a general-purpose system, applications residing in the system compete for the shared resources. Thread and task scheduling in such a multiprogrammed multithreaded environment is a significant challenge. In this thesis, we introduce a new task-based parallel reduction model, called the Glasgow Parallel Reduction Machine (GPRM). Our main objective is to provide high performance while maintaining ease of programming. GPRM supports native parallelism; it provides a modular way of expressing parallel tasks and the communication patterns between them. Compiling a GPRM program results in an Intermediate Representation (IR) containing useful information about tasks, their dependencies, as well as the initial mapping information. This compile-time information helps reduce the overhead of runtime task scheduling and is key to high performance. Generally speaking, the granularity and the number of tasks are major factors in achieving high performance. These factors are even more important in the case of GPRM, as it is highly dependent on tasks, rather than threads. We use three basic benchmarks to provide a detailed comparison of GPRM with Intel OpenMP, Cilk Plus, and Threading Building Blocks (TBB) on the Intel Xeon Phi, and with GNU OpenMP on the Tilera TILEPro64. GPRM shows superior performance in almost all cases, only by controlling the number of tasks. GPRM also provides a low-overhead mechanism, called “Global Sharing”, which improves performance in multiprogramming situations. We use OpenMP, as the most popular model for shared-memory parallel programming as the main GPRM competitor for solving three well-known problems on both platforms: LU factorisation of Sparse Matrices, Image Convolution, and Linked List Processing. We focus on proposing solutions that best fit into the GPRM’s model of execution. GPRM outperforms OpenMP in all cases on the TILEPro64. On the Xeon Phi, our solution for the LU Factorisation results in notable performance improvement for sparse matrices with large numbers of small blocks. We investigate the overhead of GPRM’s task creation and distribution for very short computations using the Image Convolution benchmark. We show that this overhead can be mitigated by combining smaller tasks into larger ones. As a result, GPRM can outperform OpenMP for convolving large 2D matrices on the Xeon Phi. Finally, we demonstrate that our parallel worksharing construct provides an efficient solution for Linked List processing and performs better than OpenMP implementations on the Xeon Phi. The results are very promising, as they verify that our parallel programming framework for manycore processors is flexible and scalable, and can provide high performance without sacrificing productivity

    Methodology for malleable applications on distributed memory systems

    Get PDF
    A la portada logo BSC(English) The dominant programming approach for scientific and industrial computing on clusters is MPI+X. While there are a variety of approaches within the node, denoted by the ``X'', Message Passing interface (MPI) is the standard for programming multiple nodes with distributed memory. This thesis argues that the OmpSs-2 tasking model can be extended beyond the node to naturally support distributed memory, with three benefits: First, at small to medium scale the tasking model is a simpler and more productive alternative to MPI. It eliminates the need to distribute the data explicitly and convert all dependencies into explicit message passing. It also avoids the complexity of hybrid programming using MPI+X. Second, the ability to offload parts of the computation among the nodes enables the runtime to automatically balance the loads in a full-scale MPI+X program. This approach does not require a cost model, and it is able to transparently balance the computational loads across the whole program, on all its nodes. Third, because the runtime handles all low-level aspects of data distribution and communication, it can change the resource allocation dynamically, in a way that is transparent to the application. This thesis describes the design, development and evaluation of OmpSs-2@Cluster, a programming model and runtime system that extends the OmpSs-2 model to allow a virtually unmodified OmpSs-2 program to run across multiple distributed memory nodes. For well-balanced applications it provides similar performance to MPI+OpenMP on up to 16 nodes, and it improves performance by up to 2x for irregular and unbalanced applications like Cholesky factorization. This work also extended OmpSs-2@Cluster for interoperability with MPI and Barcelona Supercomputing Center (BSC)'s state-of-the-art Dynamic Load Balance (DLB) library in order to dynamically balance MPI+OmpSs-2 applications by transparently offloading tasks among nodes. This approach reduces the execution time of a microscale solid mechanics application by 46% on 64 nodes and on a synthetic benchmark, it is within 10% of perfect load balancing on up to 8 nodes. Finally, the runtime was extended to transparently support malleability for pure OmpSs-2@Cluster programs and interoperate with the Resources Management System (RMS). The only change to the application is to explicitly call an API function to control the addition or removal of nodes. In this regard we additionally provide the runtime with the ability to semi-transparently save and recover part of the application status to perform checkpoint and restart. Such a feature hides the complexity of data redistribution and parallel IO from the user while allowing the program to recover and continue previous executions. Our work is a starting point for future research on fault tolerance. In summary, OmpSs-2@Cluster expands the OmpSs-2 programming model to encompass distributed memory clusters. It allows an existing OmpSs-2 program, with few if any changes, to run across multiple nodes. OmpSs-2@Cluster supports transparent multi-node dynamic load balancing for MPI+OmpSs-2 programs, and enables semi-transparent malleability for OmpSs-2@Cluster programs. The runtime system has a high level of stability and performance, and it opens several avenues for future work.(Español) El modelo de programación dominante para clusters tanto en ciencia como industria es actualmente MPI+X. A pesar de que hay alguna variedad de alternativas para programar dentro de un nodo (indicado por la "X"), el estandar para programar múltiples nodos con memoria distribuida sigue siendo Message Passing Interface (MPI). Esta tesis propone la extensión del modelo de programación basado en tareas OmpSs-2 para su funcionamiento en sistemas de memoria distribuida, destacando 3 beneficios principales: En primer lugar; a pequeña y mediana escala, un modelo basado en tareas es más simple y productivo que MPI y elimina la necesidad de distribuir los datos explícitamente y convertir todas las dependencias en mensajes. Además, evita la complejidad de la programacion híbrida MPI+X. En segundo lugar; la capacidad de enviar partes del cálculo entre los nodos permite a la librería balancear la carga de trabajo en programas MPI+X a gran escala. Este enfoque no necesita un modelo de coste y permite equilibrar cargas transversalmente en todo el programa y todos los nodos. En tercer lugar; teniendo en cuenta que es la librería quien maneja todos los aspectos relacionados con distribución y transferencia de datos, es posible la modificación dinámica y transparente de los recursos que utiliza la aplicación. Esta tesis describe el diseño, desarrollo y evaluación de OmpSs-2@Cluster; un modelo de programación y librería que extiende OmpSs-2 permitiendo la ejecución de programas OmpSs-2 existentes en múltiples nodos sin prácticamente necesidad de modificarlos. Para aplicaciones balanceadas, este modelo proporciona un rendimiento similar a MPI+OpenMP hasta 16 nodos y duplica el rendimiento en aplicaciones irregulares o desbalanceadas como la factorización de Cholesky. Este trabajo incluye la extensión de OmpSs-2@Cluster para interactuar con MPI y la librería de balanceo de carga Dynamic Load Balancing (DLB) desarrollada en el Barcelona Supercomputing Center (BSC). De este modo es posible equilibrar aplicaciones MPI+OmpSs-2 mediante la transferencia transparente de tareas entre nodos. Este enfoque reduce el tiempo de ejecución de una aplicación de mecánica de sólidos a micro-escala en un 46% en 64 nodos; en algunos experimentos hasta 8 nodos se pudo equilibrar perfectamente la carga con una diferencia inferior al 10% del equilibrio perfecto. Finalmente, se implementó otra extensión de la librería para realizar operaciones de maleabilidad en programas OmpSs-2@Cluster e interactuar con el Sistema de Manejo de Recursos (RMS). El único cambio requerido en la aplicación es la llamada explicita a una función de la interfaz que controla la adición o eliminación de nodos. Además, se agregó la funcionalidad de guardar y recuperar parte del estado de la aplicación de forma semitransparente con el objetivo de realizar operaciones de salva-reinicio. Dicha funcionalidad oculta al usuario la complejidad de la redistribución de datos y las operaciones de lectura-escritura en paralelo, mientras permite al programa recuperar y continuar ejecuciones previas. Este es un punto de partida para futuras investigaciones en tolerancia a fallos. En resumen, OmpSs-2@Cluster amplía el modelo de programación de OmpSs-2 para abarcar sistemas de memoria distribuida. El modelo permite la ejecución de programas OmpSs-2 en múltiples nodos prácticamente sin necesidad de modificarlos. OmpSs-2@Cluster permite además el balanceo dinámico de carga en aplicaciones híbridas MPI+OmpSs-2 ejecutadas en varios nodos y es capaz de realizar maleabilidad semi-transparente en programas OmpSs-2@Cluster puros. La librería tiene un niveles de rendimiento y estabilidad altos y abre varios caminos para trabajos futuro.Arquitectura de computador
    corecore