3,333 research outputs found

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    ToPoliNano: Nanoarchitectures Design Made Real

    Get PDF
    Many facts about emerging nanotechnologies are yet to be assessed. There are still major concerns, for instance, about maximum achievable device density, or about which architecture is best fit for a specific application. Growing complexity requires taking into account many aspects of technology, application and architecture at the same time. Researchers face problems that are not new per se, but are now subject to very different constraints, that need to be captured by design tools. Among the emerging nanotechnologies, two-dimensional nanowire based arrays represent promising nanostructures, especially for massively parallel computing architectures. Few attempts have been done, aimed at giving the possibility to explore architectural solutions, deriving information from extensive and reliable nanoarray characterization. Moreover, in the nanotechnology arena there is still not a clear winner, so it is important to be able to target different technologies, not to miss the next big thing. We present a tool, ToPoliNano, that enables such a multi-technological characterization in terms of logic behavior, power and timing performance, area and layout constraints, on the basis of specific technological and topological descriptions. This tool can aid the design process, beside providing a comprehensive simulation framework for DC and timing simulations, and detailed power analysis. Design and simulation results will be shown for nanoarray-based circuits. ToPoliNano is the first real design tool that tackles the top down design of a circuit based on emerging technologie

    Beyond Moore's technologies: operation principles of a superconductor alternative

    Full text link
    The predictions of Moore's law are considered by experts to be valid until 2020 giving rise to "post-Moore's" technologies afterwards. Energy efficiency is one of the major challenges in high-performance computing that should be answered. Superconductor digital technology is a promising post-Moore's alternative for the development of supercomputers. In this paper, we consider operation principles of an energy-efficient superconductor logic and memory circuits with a short retrospective review of their evolution. We analyze their shortcomings in respect to computer circuits design. Possible ways of further research are outlined.Comment: OPEN ACCES

    Low Power system Design techniques for mobile computers

    Get PDF
    Portable products are being used increasingly. Because these systems are battery powered, reducing power consumption is vital. In this report we give the properties of low power design and techniques to exploit them on the architecture of the system. We focus on: min imizing capacitance, avoiding unnecessary and wasteful activity, and reducing voltage and frequency. We review energy reduction techniques in the architecture and design of a hand-held computer and the wireless communication system, including error control, sys tem decomposition, communication and MAC protocols, and low power short range net works

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    A Modular Programmable CMOS Analog Fuzzy Controller Chip

    Get PDF
    We present a highly modular fuzzy inference analog CMOS chip architecture with on-chip digital programmability. This chip consists of the interconnection of parameterized instances of two different kind of blocks, namely label blocks and rule blocks. The architecture realizes a lattice partition of the universe of discourse, which at the hardware level means that the fuzzy labels associated to every input (realized by the label blocks) are shared among the rule blocks. This reduces the area and power consumption and is the key point for chip modularity. The proposed architecture is demonstrated through a 16-rule two input CMOS 1-ÎŒm prototype which features an operation speed of 2.5 Mflips (2.5×10^6 fuzzy inferences per second) with 8.6 mW power consumption. Core area occupation of this prototype is of only 1.6 mm 2 including the digital control and memory circuitry used for programmability. Because of the architecture modularity the number of inputs and rules can be increased with any hardly design effort.This work was supported in part by the Spanish C.I.C.Y.T under Contract TIC96-1392-C02- 02 (SIVA)

    Performance Comparison of Static CMOS and Domino Logic Style in VLSI Design: A Review

    Get PDF
    Of late, there is a steep rise in the usage of handheld gadgets and high speed applications. VLSI designers often choose static CMOS logic style for low power applications. This logic style provides low power dissipation and is free from signal noise integrity issues. However, designs based on this logic style often are slow and cannot be used in high performance circuits. On the other hand designs based on Domino logic style yield high performance and occupy less area. Yet, they have more power dissipation compared to their static CMOS counterparts. As a practice, designers during circuit synthesis, mix more than one logic style judiciously to obtain the advantages of each logic style. Carefully designing a mixed static Domino CMOS circuit can tap the advantages of both static and Domino logic styles overcoming their own short comings
    • 

    corecore