1,203 research outputs found

    Approximating the Spectrum of a Graph

    Full text link
    The spectrum of a network or graph G=(V,E)G=(V,E) with adjacency matrix AA, consists of the eigenvalues of the normalized Laplacian L=ID1/2AD1/2L= I - D^{-1/2} A D^{-1/2}. This set of eigenvalues encapsulates many aspects of the structure of the graph, including the extent to which the graph posses community structures at multiple scales. We study the problem of approximating the spectrum λ=(λ1,,λV)\lambda = (\lambda_1,\dots,\lambda_{|V|}), 0λ1,,λV20 \le \lambda_1,\le \dots, \le \lambda_{|V|}\le 2 of GG in the regime where the graph is too large to explicitly calculate the spectrum. We present a sublinear time algorithm that, given the ability to query a random node in the graph and select a random neighbor of a given node, computes a succinct representation of an approximation λ~=(λ~1,,λ~V)\widetilde \lambda = (\widetilde \lambda_1,\dots,\widetilde \lambda_{|V|}), 0λ~1,,λ~V20 \le \widetilde \lambda_1,\le \dots, \le \widetilde \lambda_{|V|}\le 2 such that λ~λ1ϵV\|\widetilde \lambda - \lambda\|_1 \le \epsilon |V|. Our algorithm has query complexity and running time exp(O(1/ϵ))exp(O(1/\epsilon)), independent of the size of the graph, V|V|. We demonstrate the practical viability of our algorithm on 15 different real-world graphs from the Stanford Large Network Dataset Collection, including social networks, academic collaboration graphs, and road networks. For the smallest of these graphs, we are able to validate the accuracy of our algorithm by explicitly calculating the true spectrum; for the larger graphs, such a calculation is computationally prohibitive. In addition we study the implications of our algorithm to property testing in the bounded degree graph model

    Vertex covering with monochromatic pieces of few colours

    Full text link
    In 1995, Erd\H{o}s and Gy\'arf\'as proved that in every 22-colouring of the edges of KnK_n, there is a vertex cover by 2n2\sqrt{n} monochromatic paths of the same colour, which is optimal up to a constant factor. The main goal of this paper is to study the natural multi-colour generalization of this problem: given two positive integers r,sr,s, what is the smallest number pcr,s(Kn)\text{pc}_{r,s}(K_n) such that in every colouring of the edges of KnK_n with rr colours, there exists a vertex cover of KnK_n by pcr,s(Kn)\text{pc}_{r,s}(K_n) monochromatic paths using altogether at most ss different colours? For fixed integers r>sr>s and as nn\to\infty, we prove that pcr,s(Kn)=Θ(n1/χ)\text{pc}_{r,s}(K_n) = \Theta(n^{1/\chi}), where χ=max{1,2+2sr}\chi=\max{\{1,2+2s-r\}} is the chromatic number of the Kneser gr aph KG(r,rs)\text{KG}(r,r-s). More generally, if one replaces KnK_n by an arbitrary nn-vertex graph with fixed independence number α\alpha, then we have pcr,s(G)=O(n1/χ)\text{pc}_{r,s}(G) = O(n^{1/\chi}), where this time around χ\chi is the chromatic number of the Kneser hypergraph KG(α+1)(r,rs)\text{KG}^{(\alpha+1)}(r,r-s). This result is tight in the sense that there exist graphs with independence number α\alpha for which pcr,s(G)=Ω(n1/χ)\text{pc}_{r,s}(G) = \Omega(n^{1/\chi}). This is in sharp contrast to the case r=sr=s, where it follows from a result of S\'ark\"ozy (2012) that pcr,r(G)\text{pc}_{r,r}(G) depends only on rr and α\alpha, but not on the number of vertices. We obtain similar results for the situation where instead of using paths, one wants to cover a graph with bounded independence number by monochromatic cycles, or a complete graph by monochromatic dd-regular graphs

    Open/Closed String Topology and Moduli Space Actions via Open/Closed Hochschild Actions

    Get PDF
    In this paper we extend our correlation functions to the open/closed case. This gives rise to actions of an open/closed version of the Sullivan PROP as well as an action of the relevant moduli space. There are several unexpected structures and conditions that arise in this extension which are forced upon us by considering the open sector. For string topology type operations, one cannot just consider graphs, but has to take punctures into account and one has to restrict the underlying Frobenius algebras. In the moduli space, one first has to pass to a smaller moduli space which is closed under open/closed duality and then consider covers in order to account for the punctures

    Open/closed string topology and moduli space actions via open/closed Hochschild actions

    No full text
    In this paper we extend our correlation functions to the open/closed case. This gives rise to actions of an open/closed version of the Sullivan PROP as well as an action of the relevant moduli space. There are several unexpected structures and conditions that arise in this extension which are forced upon us by considering the open sector. For string topology type operations, one cannot just consider graphs, but has to take punctures into account and one has to restrict the underlying Frobenius algebras. In the moduli space, one first has to pass to a smaller moduli space which is closed under open/closed duality and then consider covers in order to account for the punctures

    On the quasi-isometric rigidity of graphs of surface groups

    Full text link
    Let Γ\Gamma be a word hyperbolic group with a cyclic JSJ decomposition that has only rigid vertex groups, which are all fundamental groups of closed surface groups. We show that any group HH quasi-isometric to Γ\Gamma is abstractly commensurable with Γ\Gamma.Comment: 54 pages, 10 figures, comments welcom
    corecore