3,613 research outputs found

    Every property is testable on a natural class of scale-free multigraphs

    Get PDF
    In this paper, we introduce a natural class of multigraphs called hierarchical-scale-free (HSF) multigraphs, and consider constant-time testability on the class. We show that a very wide subclass, specifically, that in which the power-law exponent is greater than two, of HSF is hyperfinite. Based on this result, an algorithm for a deterministic partitioning oracle can be constructed. We conclude by showing that every property is constant-time testable on the above subclass of HSF. This algorithm utilizes findings by Newman and Sohler of STOC'11. However, their algorithm is based on the bounded-degree model, while it is known that actual scale-free networks usually include hubs, which have a very large degree. HSF is based on scale-free properties and includes such hubs. This is the first universal result of constant-time testability on the general graph model, and it has the potential to be applicable on a very wide range of scale-free networks.Comment: 13 pages, one figure. Difference from ver. 1: Definitions of HSF and SF become more general. Typos were fixe

    Distributed Dominating Set Approximations beyond Planar Graphs

    Full text link
    The Minimum Dominating Set (MDS) problem is one of the most fundamental and challenging problems in distributed computing. While it is well-known that minimum dominating sets cannot be approximated locally on general graphs, over the last years, there has been much progress on computing local approximations on sparse graphs, and in particular planar graphs. In this paper we study distributed and deterministic MDS approximation algorithms for graph classes beyond planar graphs. In particular, we show that existing approximation bounds for planar graphs can be lifted to bounded genus graphs, and present (1) a local constant-time, constant-factor MDS approximation algorithm and (2) a local O(logn)\mathcal{O}(\log^*{n})-time approximation scheme. Our main technical contribution is a new analysis of a slightly modified variant of an existing algorithm by Lenzen et al. Interestingly, unlike existing proofs for planar graphs, our analysis does not rely on direct topological arguments.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0299

    Separation dimension of bounded degree graphs

    Full text link
    The 'separation dimension' of a graph GG is the smallest natural number kk for which the vertices of GG can be embedded in Rk\mathbb{R}^k such that any pair of disjoint edges in GG can be separated by a hyperplane normal to one of the axes. Equivalently, it is the smallest possible cardinality of a family F\mathcal{F} of total orders of the vertices of GG such that for any two disjoint edges of GG, there exists at least one total order in F\mathcal{F} in which all the vertices in one edge precede those in the other. In general, the maximum separation dimension of a graph on nn vertices is Θ(logn)\Theta(\log n). In this article, we focus on bounded degree graphs and show that the separation dimension of a graph with maximum degree dd is at most 29logdd2^{9log^{\star} d} d. We also demonstrate that the above bound is nearly tight by showing that, for every dd, almost all dd-regular graphs have separation dimension at least d/2\lceil d/2\rceil.Comment: One result proved in this paper is also present in arXiv:1212.675
    corecore