193 research outputs found

    Local colourings and monochromatic partitions in complete bipartite graphs

    Full text link
    We show that for any 22-local colouring of the edges of the balanced complete bipartite graph Kn,nK_{n,n}, its vertices can be covered with at most~33 disjoint monochromatic paths. And, we can cover almost all vertices of any complete or balanced complete bipartite rr-locally coloured graph with O(r2)O(r^2) disjoint monochromatic cycles.\\ We also determine the 22-local bipartite Ramsey number of a path almost exactly: Every 22-local colouring of the edges of Kn,nK_{n,n} contains a monochromatic path on nn vertices.Comment: 18 page

    Minimum degree conditions for monochromatic cycle partitioning

    Get PDF
    A classical result of Erd\H{o}s, Gy\'arf\'as and Pyber states that any rr-edge-coloured complete graph has a partition into O(r2logr)O(r^2 \log r) monochromatic cycles. Here we determine the minimum degree threshold for this property. More precisely, we show that there exists a constant cc such that any rr-edge-coloured graph on nn vertices with minimum degree at least n/2+crlognn/2 + c \cdot r \log n has a partition into O(r2)O(r^2) monochromatic cycles. We also provide constructions showing that the minimum degree condition and the number of cycles are essentially tight.Comment: 22 pages (26 including appendix

    Partitioning edge-coloured complete graphs into monochromatic cycles and paths

    Full text link
    A conjecture of Erd\H{o}s, Gy\'arf\'as, and Pyber says that in any edge-colouring of a complete graph with r colours, it is possible to cover all the vertices with r vertex-disjoint monochromatic cycles. So far, this conjecture has been proven only for r = 2. In this paper we show that in fact this conjecture is false for all r > 2. In contrast to this, we show that in any edge-colouring of a complete graph with three colours, it is possible to cover all the vertices with three vertex-disjoint monochromatic paths, proving a particular case of a conjecture due to Gy\'arf\'as. As an intermediate result we show that in any edge-colouring of the complete graph with the colours red and blue, it is possible to cover all the vertices with a red path, and a disjoint blue balanced complete bipartite graph.Comment: 25 pages, 3 figure

    Vertex covers by monochromatic pieces - A survey of results and problems

    Get PDF
    This survey is devoted to problems and results concerning covering the vertices of edge colored graphs or hypergraphs with monochromatic paths, cycles and other objects. It is an expanded version of the talk with the same title at the Seventh Cracow Conference on Graph Theory, held in Rytro in September 14-19, 2014.Comment: Discrete Mathematics, 201

    Vertex covering with monochromatic pieces of few colours

    Full text link
    In 1995, Erd\H{o}s and Gy\'arf\'as proved that in every 22-colouring of the edges of KnK_n, there is a vertex cover by 2n2\sqrt{n} monochromatic paths of the same colour, which is optimal up to a constant factor. The main goal of this paper is to study the natural multi-colour generalization of this problem: given two positive integers r,sr,s, what is the smallest number pcr,s(Kn)\text{pc}_{r,s}(K_n) such that in every colouring of the edges of KnK_n with rr colours, there exists a vertex cover of KnK_n by pcr,s(Kn)\text{pc}_{r,s}(K_n) monochromatic paths using altogether at most ss different colours? For fixed integers r>sr>s and as nn\to\infty, we prove that pcr,s(Kn)=Θ(n1/χ)\text{pc}_{r,s}(K_n) = \Theta(n^{1/\chi}), where χ=max{1,2+2sr}\chi=\max{\{1,2+2s-r\}} is the chromatic number of the Kneser gr aph KG(r,rs)\text{KG}(r,r-s). More generally, if one replaces KnK_n by an arbitrary nn-vertex graph with fixed independence number α\alpha, then we have pcr,s(G)=O(n1/χ)\text{pc}_{r,s}(G) = O(n^{1/\chi}), where this time around χ\chi is the chromatic number of the Kneser hypergraph KG(α+1)(r,rs)\text{KG}^{(\alpha+1)}(r,r-s). This result is tight in the sense that there exist graphs with independence number α\alpha for which pcr,s(G)=Ω(n1/χ)\text{pc}_{r,s}(G) = \Omega(n^{1/\chi}). This is in sharp contrast to the case r=sr=s, where it follows from a result of S\'ark\"ozy (2012) that pcr,r(G)\text{pc}_{r,r}(G) depends only on rr and α\alpha, but not on the number of vertices. We obtain similar results for the situation where instead of using paths, one wants to cover a graph with bounded independence number by monochromatic cycles, or a complete graph by monochromatic dd-regular graphs

    Monochromatic cycle partitions in local edge colourings

    Full text link
    An edge colouring of a graph is said to be an rr-local colouring if the edges incident to any vertex are coloured with at most rr colours. Generalising a result of Bessy and Thomass\'e, we prove that the vertex set of any 22-locally coloured complete graph may be partitioned into two disjoint monochromatic cycles of different colours. Moreover, for any natural number rr, we show that the vertex set of any rr-locally coloured complete graph may be partitioned into O(r2logr)O(r^2 \log r) disjoint monochromatic cycles. This generalises a result of Erd\H{o}s, Gy\'arf\'as and Pyber.Comment: 10 page
    corecore