1,851 research outputs found

    Efficient Scalable Accurate Regression Queries in In-DBMS Analytics

    Get PDF
    Recent trends aim to incorporate advanced data analytics capabilities within DBMSs. Linear regression queries are fundamental to exploratory analytics and predictive modeling. However, computing their exact answers leaves a lot to be desired in terms of efficiency and scalability. We contribute a novel predictive analytics model and associated regression query processing algorithms, which are efficient, scalable and accurate. We focus on predicting the answers to two key query types that reveal dependencies between the values of different attributes: (i) mean-value queries and (ii) multivariate linear regression queries, both within specific data subspaces defined based on the values of other attributes. Our algorithms achieve many orders of magnitude improvement in query processing efficiency and nearperfect approximations of the underlying relationships among data attributes

    HUMAN FACE RECOGNITION BASED ON FRACTAL IMAGE CODING

    Get PDF
    Human face recognition is an important area in the field of biometrics. It has been an active area of research for several decades, but still remains a challenging problem because of the complexity of the human face. In this thesis we describe fully automatic solutions that can locate faces and then perform identification and verification. We present a solution for face localisation using eye locations. We derive an efficient representation for the decision hyperplane of linear and nonlinear Support Vector Machines (SVMs). For this we introduce the novel concept of ρ\rho and η\eta prototypes. The standard formulation for the decision hyperplane is reformulated and expressed in terms of the two prototypes. Different kernels are treated separately to achieve further classification efficiency and to facilitate its adaptation to operate with the fast Fourier transform to achieve fast eye detection. Using the eye locations, we extract and normalise the face for size and in-plane rotations. Our method produces a more efficient representation of the SVM decision hyperplane than the well-known reduced set methods. As a result, our eye detection subsystem is faster and more accurate. The use of fractals and fractal image coding for object recognition has been proposed and used by others. Fractal codes have been used as features for recognition, but we need to take into account the distance between codes, and to ensure the continuity of the parameters of the code. We use a method based on fractal image coding for recognition, which we call the Fractal Neighbour Distance (FND). The FND relies on the Euclidean metric and the uniqueness of the attractor of a fractal code. An advantage of using the FND over fractal codes as features is that we do not have to worry about the uniqueness of, and distance between, codes. We only require the uniqueness of the attractor, which is already an implied property of a properly generated fractal code. Similar methods to the FND have been proposed by others, but what distinguishes our work from the rest is that we investigate the FND in greater detail and use our findings to improve the recognition rate. Our investigations reveal that the FND has some inherent invariance to translation, scale, rotation and changes to illumination. These invariances are image dependent and are affected by fractal encoding parameters. The parameters that have the greatest effect on recognition accuracy are the contrast scaling factor, luminance shift factor and the type of range block partitioning. The contrast scaling factor affect the convergence and eventual convergence rate of a fractal decoding process. We propose a novel method of controlling the convergence rate by altering the contrast scaling factor in a controlled manner, which has not been possible before. This helped us improve the recognition rate because under certain conditions better results are achievable from using a slower rate of convergence. We also investigate the effects of varying the luminance shift factor, and examine three different types of range block partitioning schemes. They are Quad-tree, HV and uniform partitioning. We performed experiments using various face datasets, and the results show that our method indeed performs better than many accepted methods such as eigenfaces. The experiments also show that the FND based classifier increases the separation between classes. The standard FND is further improved by incorporating the use of localised weights. A local search algorithm is introduced to find a best matching local feature using this locally weighted FND. The scores from a set of these locally weighted FND operations are then combined to obtain a global score, which is used as a measure of the similarity between two face images. Each local FND operation possesses the distortion invariant properties described above. Combined with the search procedure, the method has the potential to be invariant to a larger class of non-linear distortions. We also present a set of locally weighted FNDs that concentrate around the upper part of the face encompassing the eyes and nose. This design was motivated by the fact that the region around the eyes has more information for discrimination. Better performance is achieved by using different sets of weights for identification and verification. For facial verification, performance is further improved by using normalised scores and client specific thresholding. In this case, our results are competitive with current state-of-the-art methods, and in some cases outperform all those to which they were compared. For facial identification, under some conditions the weighted FND performs better than the standard FND. However, the weighted FND still has its short comings when some datasets are used, where its performance is not much better than the standard FND. To alleviate this problem we introduce a voting scheme that operates with normalised versions of the weighted FND. Although there are no improvements at lower matching ranks using this method, there are significant improvements for larger matching ranks. Our methods offer advantages over some well-accepted approaches such as eigenfaces, neural networks and those that use statistical learning theory. Some of the advantages are: new faces can be enrolled without re-training involving the whole database; faces can be removed from the database without the need for re-training; there are inherent invariances to face distortions; it is relatively simple to implement; and it is not model-based so there are no model parameters that need to be tweaked

    Characteristics of continental rifting in rotational systems: New findings from spatiotemporal high resolution quantified crustal scale analogue models

    Get PDF
    Continental rifts are the expression of regional horizontal stretching and are in modelling studies often assumed to be the result of orthogonal or oblique extension. However, naturally occurring V-shaped rift geometries infer an underlying rotational component, resulting in a divergence velocity gradient. Here we use such analogue models of rifting in rotational settings to investigate and quantify the effect of such a divergence velocity gradient on normal fault growth and rift propagation towards a rotation pole. Particularly, we apply different divergence velocities and use different brittle-ductile ratios to simulate different crustal configurations and analyse its effect on rift propagation and surface deformation. Surface deformation is captured using stereoscopic 3D Digital Image Correlation, which allows for quantifying topographic evolution and surface displacement including vertical displacement. In combination with X-Ray computed tomography, we gain insights into the three-dimensional structures in our two-layer models. Based on our models, we present a novel characterisation of normal fault growth under rotational extension which is described by (a) an early stage of bidirectional stepwise growth in length by fault linkage with pulses of high growth rates followed by a longer and continuous stage of unidirectional linear fault growth; (b) segmented rifting activity which promotes strain partitioning among competing conjugate faults and (c) along-strike segmented migration of active faulting from boundary faults inwards to intra-rift faults allowing different fault generations to be simultaneously active over the entire rift length. For models with higher divergence velocities, inward migration is delayed but other first-order observations are similar to models with lower divergence velocities. Our quantitative analysis provides insights on spatiotemporal fault growth and rift propagation in analogue models of rotational rifting. Although natural rifts present complex systems, our models may contribute to a better understanding of natural rift evolution with a rotational component

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Left-ventricular epi- and endocardium extraction from 3D ultrasound images using an automatically constructed 3D ASM

    Get PDF
    © 2014 Taylor & Francis.In this paper, we propose an automatic method for constructing an active shape model (ASM) to segment the complete cardiac left ventricle in 3D ultrasound (3DUS) images, which avoids costly manual landmarking. The automatic construction of the ASM has already been addressed in the literature; however, the direct application of these methods to 3DUS is hampered by a high level of noise and artefacts. Therefore, we propose to construct the ASM by fusing the multidetector computed tomography data, to learn the shape, with the artificially generated 3DUS, in order to learn the neighbourhood of the boundaries. Our artificial images were generated by two approaches: a faster one that does not take into account the geometry of the transducer, and a more comprehensive one, implemented in Field II toolbox. The segmentation accuracy of our ASM was evaluated on 20 patients with left-ventricular asynchrony, demonstrating plausibility of the approach

    Subjectivity and complexity of facial attractiveness

    Full text link
    The origin and meaning of facial beauty represent a longstanding puzzle. Despite the profuse literature devoted to facial attractiveness, its very nature, its determinants and the nature of inter-person differences remain controversial issues. Here we tackle such questions proposing a novel experimental approach in which human subjects, instead of rating natural faces, are allowed to efficiently explore the face-space and 'sculpt' their favorite variation of a reference facial image. The results reveal that different subjects prefer distinguishable regions of the face-space, highlighting the essential subjectivity of the phenomenon.The different sculpted facial vectors exhibit strong correlations among pairs of facial distances, characterising the underlying universality and complexity of the cognitive processes, and the relative relevance and robustness of the different facial distances.Comment: 15 pages, 5 figures. Supplementary information: 26 pages, 13 figure

    Cluster analysis of the signal curves in perfusion DCE-MRI datasets

    Get PDF
    Pathological studies show that tumors consist of different sub-regions with more homogeneous vascular properties during their growth. In addition, destroying tumor's blood supply is the target of most cancer therapies. Finding the sub-regions in the tissue of interest with similar perfusion patterns provides us with valuable information about tissue structure and angiogenesis. This information on cancer therapy, for example, can be used in monitoring the response of the cancer treatment to the drug. Cluster analysis of perfusion curves assays to find sub-regions with a similar perfusion pattern. The present work focuses on the cluster analysis of perfusion curves, measured by dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). The study, besides searching for the proper clustering method, follows two other major topics, the choice of an appropriate similarity measure, and determining the number of clusters. These three subjects are connected to each other in such a way that success in one direction will help solving the other problems. This work introduces a new similarity measure, parallelism measure (PM), for comparing the parallelism in the washout phase of the signal curves. Most of the previous works used the Euclidean distance as the measure of dissimilarity. However, the Euclidean distance does not take the patterns of the signal curves into account and therefore for comparing the signal curves is not sufficient. To combine the advantages of both measures a two-steps clustering is developed. The two-steps clustering uses two different similarity measures, the introduced PM measure and Euclidean distance in two consecutive steps. The results of two-steps clustering are compared with the results of other clustering methods. The two-steps clustering besides good performance has some other advantages. The granularity and the number of clusters are controlled by thresholds defined by considering the noise in signal curves. The method is easy to implement and is robust against noise. The focus of the work is mainly the cluster analysis of breast tumors in DCE-MRI datasets. The possibility to adopt the method for liver datasets is studied as well
    corecore