94 research outputs found

    Partitioned Scheduling of Multi-Modal Mixed-Criticality Real-Time Systems on Multiprocessor Platforms

    Get PDF
    Real-time systems are becoming increasingly complex. A modern car, for example, requires a multitude of control tasks, such as braking, active suspension, and collision avoidance. These tasks not only exhibit different degrees of safety criticality but also change their criticalities as the driving mode changes. For instance, the suspension task is a critical part of the stability of the car at high speed, but it is only a comfort feature at low speed. Therefore, it is crucial to ensure timing guarantees for the system with respect to the tasks’ criticalities, not only within each mode but also during mode changes. This paper presents a partitioned multi-processor scheduling scheme for multi-modal mixed-criticality real-time systems. Our scheme consists of a packing algorithm and a scheduling algorithm for each processor that take into account both mode changes and criticalities. The packing algorithm maximizes the schedulable utilization across modes using the sustained criticality of each task, which captures the overall criticality of the task across modes. The scheduling algorithm combines Rate-Monotonic scheduling with a mode transition enforcement mechanism that relies on the transitional zero-slack instants of tasks to control low-criticality tasks during mode changes, so as to preserve the schedulability of high-criticality tasks. We also present an implementation of our scheduler in the Linux operating system, as well as an experimental evaluation to illustrate its practicality. Our evaluation shows that our scheme can provide close to twice as much tolerance to overloads (ductility) compared to a mode-agnostic scheme

    The Design, Analysis, & Application Of Multi-Modal Real-Time Embedded Systems

    Get PDF
    For many hand-held computing devices (e.g., smartphones), multiple operational modes are preferred because of their flexibility. In addition to their designated purposes, some of these devices provide a platform for different types of services, which include rendering of high-quality multimedia. Upon such devices, temporal isolation among co-executing applications is very important to ensure that each application receives an acceptable level of quality-of-service. In order to provide strong guarantees on services, multimedia applications and real-time control systems maintain timing constraints in the form of deadlines for recurring tasks. A flexible real-time multi-modal system will ideally provide system designers the option to change both resource-level modes and application-level modes. Existing schedulability analysis for a real-time multi-modal system (MMS) with software/hardware modes are computationally intractable. In addition, a fast schedulability analysis is desirable in a design-space exploration that determines the best parameters of a multi-modal system. The thesis of this dissertation is: The determination of resource parameters with guaranteed schedulability for real-time systems that may change computational requirements over time is expensive in terms of runtime. However, decoupling schedulability analysis from determining the minimum processing resource parameters of a real-time multi-modal system results in pseudo-polynomial complexity for the combined goals of determining MMS schedulability and optimal resource parameters. Effective schedulability analysis and optimized resource usages are essential for an MMS that may co-execute with other applications to reduce size and cost of an embedded system. Traditional real-time systems research has addressed the issue of schedulability under mode-changes and temporal isolation separately and independently. For instance, schedulability analysis of real-time multi-mode systems has commonly assumed that the system is executing upon a dedicated platform. On the other hand, research on temporal isolation in real-time scheduling has often assumed that the application and resource requirements of each subsystem are fixed during runtime. Only recently researchers have started to address the problem of guaranteeing hard deadlines of temporally-isolated subsystems for multi-modal systems. However, most of this research suffers two fundamental drawbacks: 1) full support for resource and application level mode-changes does not exist, and/or 2) determining schedulability for such systems has exponentialtime complexity. As a result, current literature cannot guarantee optimal resource usages for multi-modal systems. In this dissertation, we address the two fundamental drawbacks by providing a theoretical framework and associate tractable schedulability analysis for hard-real-time multi-modal subsystems. Then, by leveraging the schedulability analysis, we address the problem of optimizing a multi-modal system with respect to resource usages. To accelerate the schedulability analysis, we develop a parallel algorithm using message passing interface (MPI) to check the invariants of the schedulable real-time MMS. This parallel algorithm significantly improves the execution time for checking the schedulability (e.g., our parallel algorithm requires only approximately 45 minutes to analyze a 16-mode system upon 8 cores, whereas the analysis takes 9 hours when executed on a single core). However, even this reduction is still expensive for techniques such as design-space exploration (DSE) that repeatedly applies schedulability analysis to determine the optimal system resource parameters. Today\u27s massively parallel GPU platforms can be a cost-effective alternative for scaling the number of computer nodes and further reducing the computation time. An efficient GPU-based schedulability analysis can also be used online to reconfigure the system by re-evaluating schedulability if parameters change dynamically. In this dissertation, we also extend our parallel schedulability analysis algorithm for a GPU. Finally, we performed a case-study of radar-assisted cruise control system to show the usability of multi-modal system which consists of fixed priority non-preemptive tasks

    Performanzanalyse für Multi-Core Multi-Mode Systeme mit gemeinsam genutzten Ressourcen - Verfahren und Anwendung auf AUTOSAR -

    Get PDF
    In order to implement multi-core systems for single-mode and multi-mode real-time applications, as can be found in modern automobiles, their development process requires appropriate methods and tools for timing and performance verification. In this context, this thesis proposes first novel approaches for the analysis of worst-case blocking-times and response-times for single-mode real-time applications that share resources in partitioned multi-core systems. For this purpose a compositional performance analysis methodology is adopted and extended to take into account the contention of tasks on the processor cores and on the shared resources under different combinations of processor scheduling policies and shared resource arbitration strategies. Highly relevant is the compatibility of the proposed analysis methods with the specifications of the automotive AUTOSAR standard, which defines the combination of (1) preemptive, non-preemptive and cooperative core local scheduling with (2) lock-based arbitration of core local shared resources and spinlock-based arbitration of inter-core shared resources. Further, this thesis proposes novel timing analysis solutions for multi-mode distributed real-time systems. For such systems, the settling time of a mode change, called mode change transition latency, is identified as an important system parameter that has been neglected before. This thesis contributes a novel analysis algorithm which gives a maximum bound on each mode change transition latency of multi-mode distributed applications. Knowing the settling time of each mode change, the impact of multiple mode changes and of the possible overload situations can be handled in the early development phases of real-time systems. Finally, an approach for safely handling shared resources across mode changes is presented and a corresponding timing analysis method is contributed. The new analysis solution combines modeling and analysis elements of the multi-core and multi-mode related analysis solutions and focuses on the specification of the AUTOSAR standard. This enables system designers to handle the timing behavior of more complex systems in which the problems of mode management, multi-core scheduling and shared resource arbitration coexist. The applicability and usefulness of the contributed analysis solutions are highlighted by experimental evaluations, which are enabled by the implementation of the proposed analysis methods in a performance analysis tool framework.Um Multicore-Systeme für die Umsetzung zeitkritischer Single- und Multi-Mode Anwendungen in sicherheitskritischen Umgebungen einsetzen zu können, werden in dem Entwicklungsprozess geeignete Analysemethoden und Tools zur Bestimmung des Zeitverhaltens und der Performanz benötigt. Als erster Beitrag dieser Dissertation werden neue Analyseverfahren eingeführt, um die Worst-Case-Antwortzeiten und -Blockierungszeiten für statische Echtzeitanwendungen in Single-Mode eingebetteten Multicore-Systemen mit gemeinsam genutzten Ressourcen zu bestimmen. Die entwickelten Verfahren nutzen einen existierenden kompositionellen Performanzanalyseansatz und erweitern diesen, um verschiedene Kombinationen von partitionierenden Multiprozessor-Schedulingverfahren und –Synchronisationsmechanismen behandeln zu können. Besonders praxisrelevant ist die Möglichkeit, die Kombination von (1) preemptives, nicht-preemptives sowie kooperatives Prozessor-Scheduling und (2) Spinlock-basierten Synchronisationsmechanismen zu analysieren, die heute in AUTOSAR-konformen Automotive-Softwarearchitekturen standardisiert sind. Als zweiter Beitrag wird in dieser Dissertation ein neuer Ansatz für die Analyse der zeitlichen Auswirkungen von mehreren Szenarienübergängen in vernetzten Multi-Mode eingebetteten Systemen eingeführt. Als erste konstruktive Maßnahme ermöglicht das in dieser Arbeit präsentierte Verfahren die Berechnung der Einschwingzeit jedes Szenarioübergangs und leistet dadurch eine wichtige Hilfestellung beim Systementwurf. Auf diese Weise können die Auswirkungen der Szenarienübergänge, einschließlich der zeitlich begrenzten Überlastsituationen, kontrolliert und in den Systementwurf frühzeitig einbezogen werden. Als letzter Beitrag dieser Dissertation wird ein Ansatz für die Handhabung der Zugriffskonflikte auf gemeinsam genutzten Ressourcen in Multi-Mode eingebetteten Multicore-Systemen präsentiert und eine entsprechende Analysemethode eingeführt. Die neue Analyse kombiniert Modellierungs- und Analyse-Elemente der vorher in dieser Arbeit eingeführten Analyseansätze, und ermöglicht die Untersuchung des ungünstigsten Zeitverhaltens viel komplexer eingebetteten Multicore-Systemen. Dabei werden erneut Spezifikationen der AUTOSAR-Standards berücksichtigt. Nicht zuletzt werden alle Analysemethoden in eine Toolumgebung implementiert und für verschiedene Experimente, die deren praktische Anwendbarkeit hervorheben, angewendet

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    실시간 임베디드 시스템을 위한 동적 행위 명세 및 설계 공간 탐색 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 하순회.하나의 칩에 집적되는 프로세서의 개수가 많아지고, 많은 기능들이 통합됨에 따라, 연산양의 변화, 서비스의 품질, 예상치 못한 시스템 요소의 고장 등과 같은 다양한 요소들에 의해 시스템의 상태가 동적으로 변화하게 된다. 반면에, 본 논문에서 주된 관심사를 가지는 스마트 폰 장치에서 주로 사용되는 비디오, 그래픽 응용들의 경우, 계산 복잡도가 지속적으로 증가하고 있다. 따라서, 이렇게 동적으로 변하는 행위를 가지면서도 병렬성을 내제한 계산 집약적인 연산을 포함하는 복잡한 시스템을 구현하기 위해서는 체계적인 설계 방법론이 고도로 요구된다. 모델 기반 방법론은 병렬 임베디드 소프트웨어 개발을 위한 대표적인 방법 중 하나이다. 특히, 시스템 명세, 정적 성능 분석, 설계 공간 탐색, 그리고 자동 코드 생성까지의 모든 설계 단계를 지원하는 병렬 임베디드 소프트웨어 설계 환경으로서, HOPES 프레임워크가 제시되었다. 다른 설계 환경들과는 다르게, 이기종 멀티프로세서 아키텍처에서의 일반적인 수행 모델로서, 공통 중간 코드 (CIC) 라고 부르는 프로그래밍 플랫폼이라는 새로운 개념을 소개하였다. CIC 태스크 모델은 프로세스 네트워크 모델에 기반하고 있지만, SDF 모델로 구체화될 수 있기 때문에, 병렬 처리뿐만 아니라 정적 분석이 용이하다는 장점을 가진다. 하지만, SDF 모델은 응용의 동적인 행위를 명세할 수 없다는 표현상의 제약을 가진다. 이러한 제약을 극복하고, 시스템의 동적 행위를 응용 외부와 내부로 구분하여 명세하기 위해, 본 논문에서는 데이터 플로우와 유한상태기 (FSM) 모델에 기반하여 확장된 CIC 태스크 모델을 제안한다. 상위 수준에서는, 각 응용은 데이터 플로우 태스크로 명세 되며, 동적 행위는 응용들의 수행을 감독하는 제어 태스크로 모델 된다. 데이터 플로우 태스크 내부는, 유한상태기 기반의 SADF 모델과 유사한 형태로 동적 행위가 명세 된다SDF 태스크는 복수개의 행위를 가질 수 있으며, 모드 전환기 (MTM)이라고 불리는 유한 상태기의 테이블 형태의 명세를 통해 SDF 그래프의 모드 전환 규칙을 명세 한다. 이를 MTM-SDF 그래프라고 부르며, 복수 모드 데이터 플로우 모델 중 하나라 구분된다. 응용은 유한한 행위 (또는 모드)를 가지며, 각 행위 (모드)는 SDF 그래프로 표현되는 것을 가정한다. 이를 통해 다양한 프로세서 개수에 대해 단위시간당 처리량을 최대화하는 컴파일-시간 스케줄링을 수행하고, 스케줄 결과를 저장할 수 있도록 한다. 또한, 복수 모드 데이터 플로우 그래프를 위한 멀티프로세서 스케줄링 기법을 제시한다. 복수 모드 데이터 플로우 그래프를 위한 몇몇 스케줄링 기법들이 존재하지만, 모드 사이에 태스크 이주를 허용한 기법들은 존재하지 않는다. 하지만 태스크 이주를 허용하게 되면 자원 요구량을 줄일 수 있다는 발견을 통해, 본 논문에서는 모드 사이의 태스크 이주를 허용하는 복수 모드 데이터 플로우 그래프를 위한 멀티프로세서 스케줄링 기법을 제안한다. 유전 알고리즘에 기반하여, 제안하는 기법은 자원 요구량을 최소화하기 위해 각 모드에 해당하는 모든 SDF 그래프를 동시에 스케줄 한다. 주어진 단위 시간당 처리량 제약을 만족시키기 위해, 제안하는 기법은 각 모드 별로 실제 처리량 요구량을 계산하며, 처리량의 불규칙성을 완화하기 위한 출력 버퍼의 크기를 계산한다. 명세된 태스크 그래프와 스케줄 결과로부터, HOPES 프레임워크는 대상 아키텍처를 위한 자동 코드 생성을 지원한다. 이를 위해 자동 코드 생성기는 CIC 태스크 모델의 확장된 특징들을 지원하도록 확장되었다. 응용 수준에서는 MTM-SDF 그래프를 주어진 정적 스케줄링 결과를 따르는 멀티프로세서 코드를 생성하도록 확장되었다. 또한, 네 가지 서로 다른 스케줄링 정책 (fully-static, self-timed, static-assignment, fully-dynamic)에 대한 멀티프로세서 코드 생성을 지원한다. 시스템 수준에서는 지원하는 시스템 요청 API에 대한 실제 구현 코드를 생성하며, 정적 스케줄 결과와 태스크들의 제어 가능한 속성들에 대한 자료 구조 코드를 생성한다. 복수 모드 멀티미디어 터미널 예제를 통한 기초적인 실험들을 통해, 제안하는 방법론의 타당성을 보인다.As the number of processors in a chip increases, and more functions are integrated, the system status will change dynamically due to various factors such as the workload variation, QoS requirement, and unexpected component failure. On the other hand, computation-complexity of user applications is also steadily increasingvideo and graphics applications are two major driving forces in smart mobile devices, which define the main application domain of interest in this dissertation. So, a systematic design methodology is highly required to implement such complex systems which contain dynamically changed behavior as well as computation-intensive workload that can be parallelized. A model-based approach is one of representative approaches for parallel embedded software development. Especially, HOPES framework is proposed which is a design environment for parallel embedded software supporting the overall design steps: system specification, performance estimation, design space exploration, and automatic code generation. Distinguished from other design environments, it introduces a novel concept of programming platform, called CIC (Common Intermediate Code) that can be understood as a generic execution model of heterogeneous multiprocessor architecture. The CIC task model is based on a process network model, but it can be refined to the SDF (Synchronous Data Flow) model, since it has a very desirable features for static analyzability as well as parallel processing. However, the SDF model has a typical weakness of expression capability, especially for the system-level specification and dynamically changed behavior of an application. To overcome this weakness, in this dissertation, we propose an extended CIC task model based on dataflow and FSM models to specify the dynamic behavior of the system distinguishing inter- and intra-application dynamism. At the top-level, each application is specified by a dataflow task and the dynamic behavior is modeled as a control task that supervises the execution of applications. Inside a dataflow task, it specifies the dynamic behavior using a similar way as FSM-based SADFan SDF task may have multiple behaviors and a tabular specification of an FSM, called MTM (Mode Transition Machine), describes the mode transition rules for the SDF graph. We call it to MTM-SDF model which is classified as multi-mode dataflow models in the dissertation. It assumes that an application has a finite number of behaviors (or modes) and each behavior (mode) is represented by an SDF graph. It enables us to perform compile-time scheduling of each graph to maximize the throughput varying the number of allocated processors, and store the scheduling information. Also, a multiprocessor scheduling technique is proposed for a multi-mode dataflow graph. While there exist several scheduling techniques for multi-mode dataflow models, no one allows task migration between modes. By observing that the resource requirement can be additionally reduced if task migration is allowed, we propose a multiprocessor scheduling technique of a multi-mode dataflow graph considering task migration between modes. Based on a genetic algorithm, the proposed technique schedules all SDF graphs in all modes simultaneously to minimize the resource requirement. To satisfy the throughput constraint, the proposed technique calculates the actual throughput requirement of each mode and the output buffer size for tolerating throughput jitter. For the specified task graph and scheduling results, the CIC translator generates parallelized code for the target architecture. Therefore the CIC translator is extended to support extended features of the CIC task model. In application-level, it is extended to support multiprocessor code generation for an MTM-SDF graph considering the given static scheduling results. Also, multiprocessor code generation of four different scheduling policies are supported for an MTM-SDF graph: fully-static, self-timed, static-assignment, and fully-dynamic. In system-level, the CIC translator is extended to support code generation for implementation of system request APIs and data structures for the static scheduling results and configurable task parameters. Through preliminary experiments with a multi-mode multimedia terminal example, the viability of the proposed methodology is verified.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contribution 7 1.3 Dissertation organization 9 Chapter 2 Background 10 2.1 Related work 10 2.1.1 Compiler-based approach 10 2.1.2 Language-based approach 11 2.1.3 Model-based approach 15 2.2 HOPES framework 19 2.3 Common Intermediate Code (CIC) Model 21 Chapter 3 Dynamic Behavior Specification 26 3.1 Problem definition 26 3.1.1 System-level dynamic behavior 26 3.1.2 Application-level dynamic behavior 27 3.2 Related work 28 3.3 Motivational example 31 3.4 Control task specification for system-level dynamism 33 3.4.1 Internal specification 33 3.4.2 Action scripts 38 3.5 MTM-SDF specification for application-level dynamism 44 3.5.1 MTM specification 44 3.5.2 Task graph specification 45 3.5.3 Execution semantic of an MTM-SDF graph 46 Chapter 4 Multiprocessor Scheduling of an Multi-mode Dataflow Graph 50 4.1 Related work 51 4.2 Motivational example 56 4.2.1 Throughput requirement calculation considering mode transition delay 56 4.2.2 Task migration between mode transition 58 4.3 Problem definition 61 4.4 Throughput requirement analysis 65 4.4.1 Mode transition delay 66 4.4.2 Arrival curves of the output buffer 70 4.4.3 Buffer size determination 71 4.4.4 Throughput requirement analysis 73 4.5 Proposed MMDF scheduling framework 75 4.5.1 Optimization problem 75 4.5.2 GA configuration 76 4.5.3 Fitness function 78 4.5.4 Local optimization technique 79 4.6 Experimental results 81 4.6.1 MMDF scheduling technique 83 4.6.2 Scalability of the Proposed Framework 88 Chapter 5 Multiprocessor Code Generation for the Extended CIC Model 89 5.1 CIC translator 89 5.2 Code generation for application-level dynamism 91 5.2.1 Function call-style code generation (fully-static, self-timed) 94 5.2.2 Thread-style code generation (static-assignment, fully-dynamic) 98 5.3 Code generation for system-level dynamism 101 5.4 Experimental results 105 Chapter 6 Conclusion and Future Work 107 Bibliography 109 초록 125Docto

    Design and analysis of a 3-dimensional cluster multicomputer architecture using optical interconnection for petaFLOP computing

    Get PDF
    In this dissertation, the design and analyses of an extremely scalable distributed multicomputer architecture, using optical interconnects, that has the potential to deliver in the order of petaFLOP performance is presented in detail. The design takes advantage of optical technologies, harnessing the features inherent in optics, to produce a 3D stack that implements efficiently a large, fully connected system of nodes forming a true 3D architecture. To adopt optics in large-scale multiprocessor cluster systems, efficient routing and scheduling techniques are needed. To this end, novel self-routing strategies for all-optical packet switched networks and on-line scheduling methods that can result in collision free communication and achieve real time operation in high-speed multiprocessor systems are proposed. The system is designed to allow failed/faulty nodes to stay in place without appreciable performance degradation. The approach is to develop a dynamic communication environment that will be able to effectively adapt and evolve with a high density of missing units or nodes. A joint CPU/bandwidth controller that maximizes the resource allocation in this dynamic computing environment is introduced with an objective to optimize the distributed cluster architecture, preventing performance/system degradation in the presence of failed/faulty nodes. A thorough analysis, feasibility study and description of the characteristics of a 3-Dimensional multicomputer system capable of achieving 100 teraFLOP performance is discussed in detail. Included in this dissertation is throughput analysis of the routing schemes, using methods from discrete-time queuing systems and computer simulation results for the different proposed algorithms. A prototype of the 3D architecture proposed is built and a test bed developed to obtain experimental results to further prove the feasibility of the design, validate initial assumptions, algorithms, simulations and the optimized distributed resource allocation scheme. Finally, as a prelude to further research, an efficient data routing strategy for highly scalable distributed mobile multiprocessor networks is introduced

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria

    Smart memory management through locality analysis

    Get PDF
    Las memorias caché fueron incorporadas en los microprocesadores ya desde los primeros tiempos, y representan la solución más común para tratar la diferencia de velocidad entre el procesador y la memoria. Sin embargo, muchos estudios señalan que la capacidad de almacenamiento de la caché es malgastada muchas veces, lo cual tiene un impacto directo en el rendimiento del procesador. Aunque una caché está diseñada para explotar diferentes tipos de localidad, todas la referencias a memoria son tratadas de la misma forma, ignorando comportamientos particulares de localidad. El uso restringido de la información de localidad para cada acceso a memoria puede limitar la eficiencia de la cache. En esta tesis se demuestra como un análisis de localidad de datos puede ayudar al investigador a entender dónde y porqué ocurren los fallos de caché, y proponer entonces diferentes técnicas que hacen uso de esta información con el objetivo de mejorar el rendimiento de la memoria caché. Proponemos técnicas en las cuales la información de localidad obtenida por el analizador de localidad es pasada desde el compilador al hardware a través del ISA para guiar el manejo de los accesos a memoria.Hemos desarrollado un análisis estático de localidad de datos. Este análisis está basado en los vectores de reuso y contiene los tres típicos pasos: reuso, volumen y análisis de interferencias. Comparado con trabajos previos, tanto el análisis de volúmenes como el de interferencias ha sido mejorado utilizando información de profiling así como un análisis de interferencias más preciso. El analizador de localidad de datos propuesto ha sido incluido como un paso más en un compilador de investigación. Los resultados demuestran que, para aplicaciones numéricas, el análisis es muy preciso y el overhead de cálculo es bajo. Este análisis es la base para todas las otras partes de la tesis. Además, para algunas propuestas en la última parte de la tesis, hemos usado un análisis de localidad de datos basado en las ecuaciones de fallos de cache. Este análisis, aunque requiere más tiempo de cálculo, es más preciso y más apropiado para cachés asociativas por conjuntos. El uso de dos análisis de localidad diferentes también demuestra que las propuestas arquitectónicas de esta tesis son independientes del análisis de localidad particular utilizado.Después de mostrar la precisión del análisis, lo hemos utilizado para estudiar el comportamiento de localidad exhibido por los programas SPECfp95. Este tipo de análisis es necesario antes de proponer alguna nueva técnica ya que ayuda al investigador a entender porqué ocurren los fallos de caché. Se muestra que con el análisis propuesto se puede estudiar de forma muy precisa la localidad de un programa y detectar donde estan los "puntos negros" así como la razón de estos fallos en cache. Este estudio del comportamiento de localidad de diferentes programas es la base y motivación para las diferentes técnicas propuestas en esta tesis para mejorar el rendimiento de la memoria.Así, usando el análisis de localidad de datos y basándonos en los resultados obtenidos después de analizar el comportamiento de localidad de un conjunto de programas, proponemos utilizar este análisis con el objetivo de guiar tres técnicas diferentes: (i) manejo de caches multimódulo, (ii) prebúsqueda software para bucles con planificación módulo, y (iii) planificación de instrucciones de arquitecturas VLIW clusterizadas.El primer uso del análisis de localidad propuesto es el manejo de una novedosa organización de caché. Esta caché soporta bypass y/o está compuesta por diferentes módulos, cada uno orientado a explotar un tipo particular de localidad. La mayor diferencia de esta caché con respecto propuestas previas es que la decisión de "cachear" o no, o en qué módulo un nuevo bloque es almacenado, está controlado por algunos bits en las instrucciones de memoria ("pistas" de localidad). Estas "pistas" (hints) son fijadas en tiempo de compilación utilizando el análisis de localidad propuesto. Así, la complejidad del manejo de esta caché se mantiene bajo ya que no requiere ningún hardware adicional. Los resultados demuestran que cachés más pequeñas con un manejo más inteligente pueden funcionar tan bien (o mejor) que cachés convencionales más grandes.Hemos utilizado también el análisis de localidad para estudiar la interacción entre la segmentación software y la prebúsqueda software. La segmentación software es una técnica muy efectiva para la planificación de código en bucles (principalmente en aplicaciones numéricas en procesadores VLIW). El esquema más popular de prebúsqueda software se llama planificación módulo. Muchos trabajos sobre planificación módulo se pueden encontrar en la literatura, pero casi todos ellos consideran una suposición crítica: consideran un comportamiento optimista de la cache (en otras palabras, usan siempre la latencia de acierto cuando planifican instrucciones de memoria). Así, los resultados que presentan ignoran los efectos del bloqueo debido a dependencias con instrucciones de memoria. En esta parte de la tesis mostramos que esta suposición puede llevar a planificaciones cuyo rendimiento es bastante más bajo cuando se considera una memoria real. Nosotros proponemos un algoritmo para planificar instrucciones de memoria en bucles con planificación módulo. Hemos estudiado diferentes estrategias de prebúsqueda software y finalmente hemos propuesto un algoritmo que realiza prebúsqueda basándose en el análisis de localidad y en la forma del grafo de dependencias del bucle. Los resultados obtenidos demuestran que el esquema propuesto mejora el rendimiento de las otras heurísticas ya que obtiene un mejor compromiso entre tiempo de cálculo y de bloqueo.Finalmente, el último uso del análisis de localidad estudiado en esta tesis es para guiar un planificador de instrucciones para arquitecturas VLIW clusterizadas. Las arquitecturas clusterizadas están siendo una tendencia común en el diseño de procesadores empotrados/DSP. Típicamente, el núcleo de estos procesadores está basado en un diseño VLIW el cual particiona tanto el banco de registros como las unidades funcionales. En este trabajo vamos un paso más allá y también hacemos la partición de la memoria caché. En este caso, tanto las comunicaciones entre registros como entre memorias han de ser consideradas. Nosotros proponemos un algoritmo que realiza la partición del grafo así como la planificación de instrucciones en un único paso en lugar de hacerlo secuencialmente, lo cual se demuestra que es más efectivo. Este algoritmo es mejorado añadiendo una análisis basado en las ecuaciones de fallos de cache con el objetivo de guiar en la planificación de las instrucciones de memoria para reducir no solo comunicaciones entre registros, sino también fallos de cache.Cache memories were incorporated in microprocessors in the early times and represent the most common solution to deal with the gap between processor and memory speeds. However, many studies point out that the cache storage capacity is wasted many times, which means a direct impact in processor performance. Although a cache is designed to exploit different types of locality, all memory references are handled in the same way, ignoring particular locality behaviors. The restricted use of the locality information for each memory access can limit the effectivity of the cache. In this thesis we show how a data locality analysis can help the researcher to understand where and why cache misses occur, and then to propose different techniques that make use of this information in order to improve the performance of cache memory. We propose techniques in which locality information obtained by the locality analyzer is passed from the compiler to the hardware through the ISA to guide the management of memory accesses.We have developed a static data locality analysis. This analysis is based on reuse vectors and performs the three typical steps: reuse, volume and interfere analysis. Compared with previous works, both volume and interference analysis have been improved by using profile information as well as a more precise inter-ference analysis. The proposed data locality analyzer has been inserted as another pass in a research compiler. Results show that for numerical applications the analysis is very accurate and the computing overhead is low. This analysis is the base for all other parts of the thesis. In addition, for some proposals in the last part of the thesis we have used a data locality analysis based on cache miss equations. This analysis, although more time consuming, is more accurate and more appropriate for set-associative caches. The usage of two different locality analyzers also shows that the architectural proposals of this thesis are independent from the particular locality analysis.After showing the accuracy of the analysis, we have used it to study the locality behavior exhibited by the SPECfp95 programs. This kind of analysis is necessary before proposing any new technique since can help the researcher to understand why cache misses occur. We show that with the proposed analysis we can study very accurately the locality of a program and detect where the hot spots are as well as the reason for these misses. This study of the locality behavior of different programs is the base and motivation for the different techniques proposed in this thesis to improve the memory performance.Thus, using the data locality analysis and based on the results obtained after analyzing the locality behavior of a set of programs, we propose to use this analysis in order to guide three different techniques: (i) management of multi-module caches, (ii) software prefetching for modulo scheduled loops, and (iii) instruction scheduling for clustered VLIW architectures.The first use of the proposed data locality analysis is to manage a novel cache organization. This cache supports bypassing and/or is composed of different modules, each one oriented to exploit a particular type of locality. The main difference of this cache with respect to previous proposals is that the decision of caching or not, or in which module a new fetched block is allocated is managed by some bits in memory instructions (locality hints). These hints are set at compile time using the proposed locality analysis. Thus, the management complexity of this cache is kept low since no additional hardware is required. Results show that smaller caches with a smart management can perform as well as (or better than) bigger conventional caches.We have also used the locality analysis to study the interaction between software pipelining and software prefetching. Software pipelining has been shown to be a very effective scheduling technique for loops (mainly in numerical applications for VLIW processors). The most popular scheme for software pipelining is called modulo scheduling. Many works on modulo scheduling can be found in the literature, but almost all of them make a critical assumption: they consider an optimistic behavior of the cache (in other words, they use the hit latency when a memory instruction is scheduled). Thus, the results they present ignore the effect of stalls due to dependences with memory instructions. In this part of the thesis we show that this assumption can lead to schedules whose performance is rather low when a real memory is considered. Thus, we propose an algorithm to schedule memory instructions in modulo scheduled loops. We have studied different software prefetching strategies and finally proposed an algorithm that performs prefetching based on the locality analysis and the shape of the loop dependence graph. Results obtained shows that the proposed scheme outperforms other heuristic approaches since it achieves a better trade-off between compute and stall time than the others. Finally, the last use of the locality analysis studied in this thesis is to guide an instruction scheduler for a clustered VLIW architecture. Clustered architectures are becoming a common trend in the design of embedded/DSP processors. Typically, the core of these processors is based on a VLIW design which partitionates both register file and functional units. In this work we go a step beyond and also make a partition of the cache memory. Then, both inter-register and inter-memory communications have to be taken into account. We propose an algorithm that performs both graph partition and instruction scheduling in a single step instead of doing it sequentially, which is shown to be more effective. This algorithm is improved by adding an analysis based on the cache miss equations in order to guide the scheduling of memory instructions in clusters with the aim of reducing not only inter-register communications, but also cache misses
    corecore