104 research outputs found

    Spatially partitioned embedded Runge-Kutta Methods

    Get PDF
    We study spatially partitioned embedded Runge–Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in non-embedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to non-physical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted non-oscillatory (WENO) spatial discretizations. Numerical experiments are provided to support the theory

    A class of high-order Runge-Kutta-Chebyshev stability polynomials

    Get PDF
    The analytic form of a new class of factorized Runge-Kutta-Chebyshev (FRKC) stability polynomials of arbitrary order NN is presented. Roots of FRKC stability polynomials of degree L=MNL=MN are used to construct explicit schemes comprising LL forward Euler stages with internal stability ensured through a sequencing algorithm which limits the internal amplification factors to ∌L2\sim L^2. The associated stability domain scales as M2M^2 along the real axis. Marginally stable real-valued points on the interior of the stability domain are removed via a prescribed damping procedure. By construction, FRKC schemes meet all linear order conditions; for nonlinear problems at orders above 2, complex splitting or Butcher series composition methods are required. Linear order conditions of the FRKC stability polynomials are verified at orders 2, 4, and 6 in numerical experiments. Comparative studies with existing methods show the second-order unsplit FRKC2 scheme and higher order (4 and 6) split FRKCs schemes are efficient for large moderately stiff problems.Comment: 24 pages, 5 figures. Accepted for publication in Journal of Computational Physics, 22 Jul 2015. Revise

    A Study of 2-Additive Splitting for Solving Advection-Diffusion-Reaction Equations

    Get PDF
    An initial-value problem consists of an ordinary differential equation subject to an initial condition. The right-hand side of the differential equation can be interpreted as additively split when it is comprised of the sum of two or more contributing factors. For instance, the right-hand sides of initial-value problems derived from advection-diffusion-reaction equations are comprised of the sum of terms emanating from three distinct physical processes: advection, diffusion, and reaction. In some cases, solutions to initial-value problems can be calculated analytically, but when an analytic solution is unknown or nonexistent, methods of numerical integration are used to calculate solutions. The runtime performance of numerical methods is problem dependent; therefore, one must choose an appropriate numerical method to achieve favourable performance, according to characteristics of the problem. Additive methods of numerical integration apply distinct methods to the distinct contributing factors of an additively split problem. Treating the contributing factors with methods that are known to perform well on them individually has the potential to yield an additive method that outperforms single methods applied to the entire (unsplit) problem. Splittings of the right-hand side can be physics-based, i.e., based on physical characteristics of the problem, such as advection, diffusion, or reaction terms. Splittings can also be based on linearization, called Jacobian splitting in this thesis, where the linearized part of the problem is treated with one method and the rest of the problem is treated with another. A comparison of these splitting techniques is performed by applying a set of additive methods to a test suite of problems. Many common non-additive methods are also included to serve as a performance baseline. To perform this numerical study, a problem-solving environment was developed to evaluate permutations of problems, methods, and their associated parameters. The test suite is comprised of several distinct advection-diffusion-reaction equations that have been chosen to represent a wide range of common problem characteristics. When solving split problems in the test suite, it is found that additive Runge–Kutta methods of orders three, four, and five using Jacobian splitting generally outperform those same methods using physics-based splitting. These results provide evidence that Jacobian splitting is an effective approach when solving such initial-value problems in practice

    A class of implicit-explicit two-step Runge-Kutta methods

    Get PDF
    This work develops implicit-explicit time integrators based on two-step Runge-Kutta methods. The class of schemes of interest is characterized by linear invariant preservation and high stage orders. Theoretical consistency and stability analyses are performed to reveal the properties of these methods. The new framework offers extreme flexibility in the construction of partitioned integrators, since no coupling conditions are necessary. Moreover, the methods are not plagued by severe order reduction, due to their high stage orders. Two practical schemes of orders four and six are constructed, and are used to solve several test problems. Numerical results confirm the theoretical findings

    Explicit stabilized integration of stiff determinisitic or stochastic problems

    Get PDF
    Explicit stabilized methods for stiff ordinary differential equations have a long history. Proposed in the early 1960s and developed during 40 years for the integration of stiff ordinary differential equations, these methods have recently been extended to implicit-explicit or partitioned type methods for advection-diffusion-reaction problems, and to efficient explicit solvers for stiff mean-square stable stochastic problems. After a short review on the basic stabilized methods we discuss some recent developments

    Conservative stabilized Runge-Kutta methods for the Vlasov-Fokker-Planck equation

    Full text link
    In this work, we aim at constructing numerical schemes, that are as efficient as possible in terms of cost and conservation of invariants, for the Vlasov--Fokker--Planck system coupled with Poisson or Amp\`ere equation. Splitting methods are used where the linear terms in space are treated by spectral or semi-Lagrangian methods and the nonlinear diffusion in velocity in the collision operator is treated using a stabilized Runge--Kutta--Chebyshev (RKC) integrator, a powerful alternative of implicit schemes. The new schemes are shown to exactly preserve mass and momentum. The conservation of total energy is obtained using a suitable approximation of the electric field. An H-theorem is proved in the semi-discrete case, while the entropy decay is illustrated numerically for the fully discretized problem. Numerical experiments that include investigation of Landau damping phenomenon and bump-on-tail instability are performed to illustrate the efficiency of the new schemes

    An enhanced immersed structural potential method (ISPM) for the simulation of fluid-structure interaction problems

    Get PDF
    Immersed methods are widely used nowadays for the computational simulation of Fluid-Structure Interaction problems. In this paper, the Immersed Structural Potential Method (ISPM) is coupled with a Runge-Kutta-Chebyshev Projection method in order to increase the overall computational efficiency of the methodology. Application of the framework to large three-dimensional problems is carried out. A series of numerical examples will be presented in order to demonstrate the robustness and flexibility of the proposed methodology

    Explicit stabilized multirate method for stiff differential equations

    Get PDF
    Stabilized Runge–Kutta methods are especially efficient for the numerical solution of large systems of stiff nonlinear differential equations because they are fully explicit. For semi-discrete parabolic problems, for instance, stabilized Runge–Kutta methods overcome the stringent stability condition of standard methods without sacrificing explicitness. However, when stiffness is only induced by a few components, as in the presence of spatially local mesh refinement, their efficiency deteriorates. To remove the crippling effect of a few severely stiff components on the entire system of differential equations, we derive a modified equation, whose stiffness solely depends on the remaining mildly stiff components. By applying stabilized Runge–Kutta methods to this modified equation, we then devise an explicit multirate Runge–Kutta–Chebyshev (mRKC) method whose stability conditions are independent of a few severely stiff components. Stability of the mRKC method is proved for a model problem, whereas its efficiency and usefulness are demonstrated through a series of numerical experiments
    • 

    corecore