23 research outputs found

    Matrix partitions of perfect graphs

    Get PDF
    AbstractGiven a symmetric m by m matrix M over 0,1,*, the M-partition problem asks whether or not an input graph G can be partitioned into m parts corresponding to the rows (and columns) of M so that two distinct vertices from parts i and j (possibly with i=j) are non-adjacent if M(i,j)=0, and adjacent if M(i,j)=1. These matrix partition problems generalize graph colourings and homomorphisms, and arise frequently in the study of perfect graphs; example problems include split graphs, clique and skew cutsets, homogeneous sets, and joins.In this paper we study M-partitions restricted to perfect graphs. We identify a natural class of ‘normal’ matrices M for which M-partitionability of perfect graphs can be characterized by a finite family of forbidden induced subgraphs (and hence admits polynomial time algorithms for perfect graphs). We further classify normal matrices into two classes: for the first class, the size of the forbidden subgraphs is linear in the size of M; for the second class we only prove exponential bounds on the size of forbidden subgraphs. (We exhibit normal matrices of the second class for which linear bounds do not hold.)We present evidence that matrices M which are not normal yield badly behaved M-partition problems: there are polynomial time solvable M-partition problems that do not have finite forbidden subgraph characterizations for perfect graphs. There are M-partition problems that are NP-complete for perfect graphs. There are classes of matrices M for which even proving ‘dichotomy’ of the corresponding M-partition problems for perfect graphs—i.e., proving that these problems are all polynomial or NP-complete—is likely to be difficult

    On the tractability of some natural packing, covering and partitioning problems

    Get PDF
    In this paper we fix 7 types of undirected graphs: paths, paths with prescribed endvertices, circuits, forests, spanning trees, (not necessarily spanning) trees and cuts. Given an undirected graph G=(V,E)G=(V,E) and two "object types" A\mathrm{A} and B\mathrm{B} chosen from the alternatives above, we consider the following questions. \textbf{Packing problem:} can we find an object of type A\mathrm{A} and one of type B\mathrm{B} in the edge set EE of GG, so that they are edge-disjoint? \textbf{Partitioning problem:} can we partition EE into an object of type A\mathrm{A} and one of type B\mathrm{B}? \textbf{Covering problem:} can we cover EE with an object of type A\mathrm{A}, and an object of type B\mathrm{B}? This framework includes 44 natural graph theoretic questions. Some of these problems were well-known before, for example covering the edge-set of a graph with two spanning trees, or finding an ss-tt path PP and an s′s'-t′t' path P′P' that are edge-disjoint. However, many others were not, for example can we find an ss-tt path P⊆EP\subseteq E and a spanning tree T⊆ET\subseteq E that are edge-disjoint? Most of these previously unknown problems turned out to be NP-complete, many of them even in planar graphs. This paper determines the status of these 44 problems. For the NP-complete problems we also investigate the planar version, for the polynomial problems we consider the matroidal generalization (wherever this makes sense)

    Some NP-complete edge packing and partitioning problems in planar graphs

    Full text link
    Graph packing and partitioning problems have been studied in many contexts, including from the algorithmic complexity perspective. Consider the packing problem of determining whether a graph contains a spanning tree and a cycle that do not share edges. Bern\'ath and Kir\'aly proved that this decision problem is NP-complete and asked if the same result holds when restricting to planar graphs. Similarly, they showed that the packing problem with a spanning tree and a path between two distinguished vertices is NP-complete. They also established the NP-completeness of the partitioning problem of determining whether the edge set of a graph can be partitioned into a spanning tree and a (not-necessarily spanning) tree. We prove that all three problems remain NP-complete even when restricted to planar graphs.Comment: 6 pages, 2 figure

    Some NP-complete Edge Packing and Partitioning Problems in Planar Graphs

    Get PDF
    Graph packing and partitioning problems have been studied in many contexts, including from the algorithmic complexity perspective. Consider the packing problem of determining whether a graph contains a spanning tree and a cycle that do not share edges. Bernáth and Király proved that this decision problem is NP-complete and asked if the same result holds when restricting to planar graphs. Similarly, they showed that the packing problem with a spanning tree and a path between two distinguished vertices is NP-complete. They also established the NP-completeness of the partitioning problem of determining whether the edge set of a graph can be partitioned into a spanning tree and a (not-necessarily spanning) tree. We prove that all three problems remain NP-complete even when restricted to planar graphs

    The Complexity of Approximately Counting Retractions

    Full text link
    Let GG be a graph that contains an induced subgraph HH. A retraction from GG to HH is a homomorphism from GG to HH that is the identity function on HH. Retractions are very well-studied: Given HH, the complexity of deciding whether there is a retraction from an input graph GG to HH is completely classified, in the sense that it is known for which HH this problem is tractable (assuming P≠NP\mathrm{P}\neq \mathrm{NP}). Similarly, the complexity of (exactly) counting retractions from GG to HH is classified (assuming FP≠#P\mathrm{FP}\neq \#\mathrm{P}). However, almost nothing is known about approximately counting retractions. Our first contribution is to give a complete trichotomy for approximately counting retractions to graphs of girth at least 55. Our second contribution is to locate the retraction counting problem for each HH in the complexity landscape of related approximate counting problems. Interestingly, our results are in contrast to the situation in the exact counting context. We show that the problem of approximately counting retractions is separated both from the problem of approximately counting homomorphisms and from the problem of approximately counting list homomorphisms --- whereas for exact counting all three of these problems are interreducible. We also show that the number of retractions is at least as hard to approximate as both the number of surjective homomorphisms and the number of compactions. In contrast, exactly counting compactions is the hardest of all of these exact counting problems

    Parallel Architectures and Parallel Algorithms for Integrated Vision Systems

    Get PDF
    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems

    The repulsive lattice gas, the independent-set polynomial, and the Lov\'asz local lemma

    Full text link
    We elucidate the close connection between the repulsive lattice gas in equilibrium statistical mechanics and the Lovasz local lemma in probabilistic combinatorics. We show that the conclusion of the Lovasz local lemma holds for dependency graph G and probabilities {p_x} if and only if the independent-set polynomial for G is nonvanishing in the polydisc of radii {p_x}. Furthermore, we show that the usual proof of the Lovasz local lemma -- which provides a sufficient condition for this to occur -- corresponds to a simple inductive argument for the nonvanishing of the independent-set polynomial in a polydisc, which was discovered implicitly by Shearer and explicitly by Dobrushin. We also present some refinements and extensions of both arguments, including a generalization of the Lovasz local lemma that allows for "soft" dependencies. In addition, we prove some general properties of the partition function of a repulsive lattice gas, most of which are consequences of the alternating-sign property for the Mayer coefficients. We conclude with a brief discussion of the repulsive lattice gas on countably infinite graphs.Comment: LaTex2e, 97 pages. Version 2 makes slight changes to improve clarity. To be published in J. Stat. Phy
    corecore