1,643 research outputs found

    Performance evaluation and hyperparameter tuning of statistical and machine-learning models using spatial data

    Get PDF
    Machine-learning algorithms have gained popularity in recent years in the field of ecological modeling due to their promising results in predictive performance of classification problems. While the application of such algorithms has been highly simplified in the last years due to their well-documented integration in commonly used statistical programming languages such as R, there are several practical challenges in the field of ecological modeling related to unbiased performance estimation, optimization of algorithms using hyperparameter tuning and spatial autocorrelation. We address these issues in the comparison of several widely used machine-learning algorithms such as Boosted Regression Trees (BRT), k-Nearest Neighbor (WKNN), Random Forest (RF) and Support Vector Machine (SVM) to traditional parametric algorithms such as logistic regression (GLM) and semi-parametric ones like generalized additive models (GAM). Different nested cross-validation methods including hyperparameter tuning methods are used to evaluate model performances with the aim to receive bias-reduced performance estimates. As a case study the spatial distribution of forest disease Diplodia sapinea in the Basque Country in Spain is investigated using common environmental variables such as temperature, precipitation, soil or lithology as predictors. Results show that GAM and RF (mean AUROC estimates 0.708 and 0.699) outperform all other methods in predictive accuracy. The effect of hyperparameter tuning saturates at around 50 iterations for this data set. The AUROC differences between the bias-reduced (spatial cross-validation) and overoptimistic (non-spatial cross-validation) performance estimates of the GAM and RF are 0.167 (24%) and 0.213 (30%), respectively. It is recommended to also use spatial partitioning for cross-validation hyperparameter tuning of spatial data

    Gender and gaze gesture recognition for human-computer interaction

    Get PDF
    © 2016 Elsevier Inc. The identification of visual cues in facial images has been widely explored in the broad area of computer vision. However theoretical analyses are often not transformed into widespread assistive Human-Computer Interaction (HCI) systems, due to factors such as inconsistent robustness, low efficiency, large computational expense or strong dependence on complex hardware. We present a novel gender recognition algorithm, a modular eye centre localisation approach and a gaze gesture recognition method, aiming to escalate the intelligence, adaptability and interactivity of HCI systems by combining demographic data (gender) and behavioural data (gaze) to enable development of a range of real-world assistive-technology applications. The gender recognition algorithm utilises Fisher Vectors as facial features which are encoded from low-level local features in facial images. We experimented with four types of low-level features: greyscale values, Local Binary Patterns (LBP), LBP histograms and Scale Invariant Feature Transform (SIFT). The corresponding Fisher Vectors were classified using a linear Support Vector Machine. The algorithm has been tested on the FERET database, the LFW database and the FRGCv2 database, yielding 97.7%, 92.5% and 96.7% accuracy respectively. The eye centre localisation algorithm has a modular approach, following a coarse-to-fine, global-to-regional scheme and utilising isophote and gradient features. A Selective Oriented Gradient filter has been specifically designed to detect and remove strong gradients from eyebrows, eye corners and self-shadows (which sabotage most eye centre localisation methods). The trajectories of the eye centres are then defined as gaze gestures for active HCI. The eye centre localisation algorithm has been compared with 10 other state-of-the-art algorithms with similar functionality and has outperformed them in terms of accuracy while maintaining excellent real-time performance. The above methods have been employed for development of a data recovery system that can be employed for implementation of advanced assistive technology tools. The high accuracy, reliability and real-time performance achieved for attention monitoring, gaze gesture control and recovery of demographic data, can enable the advanced human-robot interaction that is needed for developing systems that can provide assistance with everyday actions, thereby improving the quality of life for the elderly and/or disabled

    Acta Polytechnica Hungarica 2006

    Get PDF

    2D and 3D computer vision analysis of gaze, gender and age

    Get PDF
    Human-Computer Interaction (HCI) has been an active research area for over four decades. Research studies and commercial designs in this area have been largely facilitated by the visual modality which brings diversified functionality and improved usability to HCI interfaces by employing various computer vision techniques. This thesis explores a number of facial cues, such as gender, age and gaze, by performing 2D and 3D based computer vision analysis. The ultimate aim is to create a natural HCI strategy that can fulfil user expectations, augment user satisfaction and enrich user experience by understanding user characteristics and behaviours. To this end, salient features have been extracted and analysed from 2D and 3D face representations; 3D reconstruction algorithms and their compatible real-world imaging systems have been investigated; case study HCI systems have been designed to demonstrate the reliability, robustness, and applicability of the proposed method.More specifically, an unsupervised approach has been proposed to localise eye centres in images and videos accurately and efficiently. This is achieved by utilisation of two types of geometric features and eye models, complemented by an iris radius constraint and a selective oriented gradient filter specifically tailored to this modular scheme. This approach resolves challenges such as interfering facial edges, undesirable illumination conditions, head poses, and the presence of facial accessories and makeup. Tested on 3 publicly available databases (the BioID database, the GI4E database and the extended Yale Face Database b), and a self-collected database, this method outperforms all the methods in comparison and thus proves to be highly accurate and robust. Based on this approach, a gaze gesture recognition algorithm has been designed to increase the interactivity of HCI systems by encoding eye saccades into a communication channel similar to the role of hand gestures. As well as analysing eye/gaze data that represent user behaviours and reveal user intentions, this thesis also investigates the automatic recognition of user demographics such as gender and age. The Fisher Vector encoding algorithm is employed to construct visual vocabularies as salient features for gender and age classification. Algorithm evaluations on three publicly available databases (the FERET database, the LFW database and the FRCVv2 database) demonstrate the superior performance of the proposed method in both laboratory and unconstrained environments. In order to achieve enhanced robustness, a two-source photometric stereo method has been introduced to recover surface normals such that more invariant 3D facia features become available that can further boost classification accuracy and robustness. A 2D+3D imaging system has been designed for construction of a self-collected dataset including 2D and 3D facial data. Experiments show that utilisation of 3D facial features can increase gender classification rate by up to 6% (based on the self-collected dataset), and can increase age classification rate by up to 12% (based on the Photoface database). Finally, two case study HCI systems, a gaze gesture based map browser and a directed advertising billboard, have been designed by adopting all the proposed algorithms as well as the fully compatible imaging system. Benefits from the proposed algorithms naturally ensure that the case study systems can possess high robustness to head pose variation and illumination variation; and can achieve excellent real-time performance. Overall, the proposed HCI strategy enabled by reliably recognised facial cues can serve to spawn a wide array of innovative systems and to bring HCI to a more natural and intelligent state

    Image similarity in medical images

    Get PDF
    Recent experiments have indicated a strong influence of the substrate grain orientation on the self-ordering in anodic porous alumina. Anodic porous alumina with straight pore channels grown in a stable, self-ordered manner is formed on (001) oriented Al grain, while disordered porous pattern is formed on (101) oriented Al grain with tilted pore channels growing in an unstable manner. In this work, numerical simulation of the pore growth process is carried out to understand this phenomenon. The rate-determining step of the oxide growth is assumed to be the Cabrera-Mott barrier at the oxide/electrolyte (o/e) interface, while the substrate is assumed to determine the ratio β between the ionization and oxidation reactions at the metal/oxide (m/o) interface. By numerically solving the electric field inside a growing porous alumina during anodization, the migration rates of the ions and hence the evolution of the o/e and m/o interfaces are computed. The simulated results show that pore growth is more stable when β is higher. A higher β corresponds to more Al ionized and migrating away from the m/o interface rather than being oxidized, and hence a higher retained O:Al ratio in the oxide. Experimentally measured oxygen content in the self-ordered porous alumina on (001) Al is indeed found to be about 3% higher than that in the disordered alumina on (101) Al, in agreement with the theoretical prediction. The results, therefore, suggest that ionization on (001) Al substrate is relatively easier than on (101) Al, and this leads to the more stable growth of the pore channels on (001) Al

    Image similarity in medical images

    Get PDF

    Advances on Mechanics, Design Engineering and Manufacturing III

    Get PDF
    This open access book gathers contributions presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2020), held as a web conference on June 2–4, 2020. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is organized into four main parts, reflecting the focus and primary themes of the conference. The contributions presented here not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed and future interdisciplinary collaborations

    On the Empty Miles of Ride-Sourcing Services: Theory, Observation and Countermeasures

    Full text link
    The proliferation of smartphones in recent years has catalyzed the rapid growth of ride-sourcing services such as Uber, Lyft, and Didi Chuxing. Such on-demand e-hailing services significantly reduce the meeting frictions between drivers and riders and provide the platform with unprecedented flexibility and challenges in system management. A big issue that arises with service expansion is the empty miles produced by ride-sourcing vehicles. To overcome the physical and temporal frictions that separate drivers from customers and effectively reposition themselves towards desired destinations, ride-sourcing vehicles generate a significant number of vacant trips. These empty miles traveled result in inefficient use of the available fleet and increase traffic demand, posing substantial impacts on system operations. To tackle the issues, my dissertation is dedicated to deepening our understanding of the formation and the externalities of empty miles, and then proposing countermeasures to bolster system performance. There are two essential and interdependent contributors to empty miles generated by ride-sourcing vehicles: cruising in search of customers and deadheading to pick them up, which are markedly dictated by forces from riders, drivers, the platform, and policies imposed by regulators. In this dissertation, we structure our study of this complex process along three primary axes, respectively centered on the strategies of a platform, the behaviors of drivers, and the concerns of government agencies. In each axis, theoretical models are established to help understand the underlying physics and identify the trade-offs and potential issues that drive behind the empty miles. Massive data from Didi Chuxing, a dominant ride-sourcing company in China, are leveraged to evidence the presence of matters discussed in reality. Countermeasures are then investigated to strengthen management upon the empty miles, balance the interests of different stakeholders, and improve the system performance. Although this dissertation scopes out ride-sourcing services, the models, analyses, and solutions can be readily adapted to address related issues in other types of shared-use mobility services.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163209/1/xzt_1.pd

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition
    • …
    corecore