127,553 research outputs found

    Distributed Reasoning in a Peer-to-Peer Setting: Application to the Semantic Web

    Full text link
    In a peer-to-peer inference system, each peer can reason locally but can also solicit some of its acquaintances, which are peers sharing part of its vocabulary. In this paper, we consider peer-to-peer inference systems in which the local theory of each peer is a set of propositional clauses defined upon a local vocabulary. An important characteristic of peer-to-peer inference systems is that the global theory (the union of all peer theories) is not known (as opposed to partition-based reasoning systems). The main contribution of this paper is to provide the first consequence finding algorithm in a peer-to-peer setting: DeCA. It is anytime and computes consequences gradually from the solicited peer to peers that are more and more distant. We exhibit a sufficient condition on the acquaintance graph of the peer-to-peer inference system for guaranteeing the completeness of this algorithm. Another important contribution is to apply this general distributed reasoning setting to the setting of the Semantic Web through the Somewhere semantic peer-to-peer data management system. The last contribution of this paper is to provide an experimental analysis of the scalability of the peer-to-peer infrastructure that we propose, on large networks of 1000 peers

    On the strong partition dimension of graphs

    Full text link
    We present a different way to obtain generators of metric spaces having the property that the ``position'' of every element of the space is uniquely determined by the distances from the elements of the generators. Specifically we introduce a generator based on a partition of the metric space into sets of elements. The sets of the partition will work as the new elements which will uniquely determine the position of each single element of the space. A set WW of vertices of a connected graph GG strongly resolves two different vertices x,yWx,y\notin W if either dG(x,W)=dG(x,y)+dG(y,W)d_G(x,W)=d_G(x,y)+d_G(y,W) or dG(y,W)=dG(y,x)+dG(x,W)d_G(y,W)=d_G(y,x)+d_G(x,W), where dG(x,W)=min{d(x,w)  :  wW}d_G(x,W)=\min\left\{d(x,w)\;:\;w\in W\right\}. An ordered vertex partition Π={U1,U2,...,Uk}\Pi=\left\{U_1,U_2,...,U_k\right\} of a graph GG is a strong resolving partition for GG if every two different vertices of GG belonging to the same set of the partition are strongly resolved by some set of Π\Pi. A strong resolving partition of minimum cardinality is called a strong partition basis and its cardinality the strong partition dimension. In this article we introduce the concepts of strong resolving partition and strong partition dimension and we begin with the study of its mathematical properties. We give some realizability results for this parameter and we also obtain tight bounds and closed formulae for the strong metric dimension of several graphs.Comment: 16 page

    Hidden Markov Models for Gene Sequence Classification: Classifying the VSG genes in the Trypanosoma brucei Genome

    Full text link
    The article presents an application of Hidden Markov Models (HMMs) for pattern recognition on genome sequences. We apply HMM for identifying genes encoding the Variant Surface Glycoprotein (VSG) in the genomes of Trypanosoma brucei (T. brucei) and other African trypanosomes. These are parasitic protozoa causative agents of sleeping sickness and several diseases in domestic and wild animals. These parasites have a peculiar strategy to evade the host's immune system that consists in periodically changing their predominant cellular surface protein (VSG). The motivation for using patterns recognition methods to identify these genes, instead of traditional homology based ones, is that the levels of sequence identity (amino acid and DNA sequence) amongst these genes is often below of what is considered reliable in these methods. Among pattern recognition approaches, HMM are particularly suitable to tackle this problem because they can handle more naturally the determination of gene edges. We evaluate the performance of the model using different number of states in the Markov model, as well as several performance metrics. The model is applied using public genomic data. Our empirical results show that the VSG genes on T. brucei can be safely identified (high sensitivity and low rate of false positives) using HMM.Comment: Accepted article in July, 2015 in Pattern Analysis and Applications, Springer. The article contains 23 pages, 4 figures, 8 tables and 51 reference

    Structuring Decisions Under Deep Uncertainty

    Get PDF
    Innovative research on decision making under ‘deep uncertainty’ is underway in applied fields such as engineering and operational research, largely outside the view of normative theorists grounded in decision theory. Applied methods and tools for decision support under deep uncertainty go beyond standard decision theory in the attention that they give to the structuring of decisions. Decision structuring is an important part of a broader philosophy of managing uncertainty in decision making, and normative decision theorists can both learn from, and contribute to, the growing deep uncertainty decision support literature

    Symbolic dynamics and synchronization of coupled map networks with multiple delays

    Full text link
    We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol sequences related to the characteristics of the dynamics. In particular, we show that the resulting forbidden sequences are closely related to the time delays in the system. We present two applications to coupled map lattices, namely (1) detecting synchronization and (2) determining unknown values of the transmission delays in networks with possibly directed and weighted connections and measurement noise. The method is applicable to multi-dimensional as well as set-valued maps, and to networks with time-varying delays and connection structure.Comment: 13 pages, 4 figure

    Improving legibility of natural deduction proofs is not trivial

    Full text link
    In formal proof checking environments such as Mizar it is not merely the validity of mathematical formulas that is evaluated in the process of adoption to the body of accepted formalizations, but also the readability of the proofs that witness validity. As in case of computer programs, such proof scripts may sometimes be more and sometimes be less readable. To better understand the notion of readability of formal proofs, and to assess and improve their readability, we propose in this paper a method of improving proof readability based on Behaghel's First Law of sentence structure. Our method maximizes the number of local references to the directly preceding statement in a proof linearisation. It is shown that our optimization method is NP-complete.Comment: 33 page

    Criticality of mostly informative samples: A Bayesian model selection approach

    Get PDF
    We discuss a Bayesian model selection approach to high dimensional data in the deep under sampling regime. The data is based on a representation of the possible discrete states ss, as defined by the observer, and it consists of MM observations of the state. This approach shows that, for a given sample size MM, not all states observed in the sample can be distinguished. Rather, only a partition of the sampled states ss can be resolved. Such partition defines an {\em emergent} classification qsq_s of the states that becomes finer and finer as the sample size increases, through a process of {\em symmetry breaking} between states. This allows us to distinguish between the resolutionresolution of a given representation of the observer defined states ss, which is given by the entropy of ss, and its relevancerelevance which is defined by the entropy of the partition qsq_s. Relevance has a non-monotonic dependence on resolution, for a given sample size. In addition, we characterise most relevant samples and we show that they exhibit power law frequency distributions, generally taken as signatures of "criticality". This suggests that "criticality" reflects the relevance of a given representation of the states of a complex system, and does not necessarily require a specific mechanism of self-organisation to a critical point.Comment: 31 pages, 7 figure
    corecore