5,003 research outputs found

    A polynomial regularity lemma for semi-algebraic hypergraphs and its applications in geometry and property testing

    Get PDF
    Fox, Gromov, Lafforgue, Naor, and Pach proved a regularity lemma for semi-algebraic kk-uniform hypergraphs of bounded complexity, showing that for each ϵ>0\epsilon>0 the vertex set can be equitably partitioned into a bounded number of parts (in terms of ϵ\epsilon and the complexity) so that all but an ϵ\epsilon-fraction of the kk-tuples of parts are homogeneous. We prove that the number of parts can be taken to be polynomial in 1/ϵ1/\epsilon. Our improved regularity lemma can be applied to geometric problems and to the following general question on property testing: is it possible to decide, with query complexity polynomial in the reciprocal of the approximation parameter, whether a hypergraph has a given hereditary property? We give an affirmative answer for testing typical hereditary properties for semi-algebraic hypergraphs of bounded complexity

    Tur\'annical hypergraphs

    Full text link
    This paper is motivated by the question of how global and dense restriction sets in results from extremal combinatorics can be replaced by less global and sparser ones. The result we consider here as an example is Turan's theorem, which deals with graphs G=([n],E) such that no member of the restriction set consisting of all r-tuples on [n] induces a copy of K_r. Firstly, we examine what happens when this restriction set is replaced just by all r-tuples touching a given m-element set. That is, we determine the maximal number of edges in an n-vertex such that no K_r hits a given vertex set. Secondly, we consider sparse random restriction sets. An r-uniform hypergraph R on vertex set [n] is called Turannical (respectively epsilon-Turannical), if for any graph G on [n] with more edges than the Turan number ex(n,K_r) (respectively (1+\eps)ex(n,K_r), no hyperedge of R induces a copy of K_r in G. We determine the thresholds for random r-uniform hypergraphs to be Turannical and to epsilon-Turannical. Thirdly, we transfer this result to sparse random graphs, using techniques recently developed by Schacht [Extremal results for random discrete structures] to prove the Kohayakawa-Luczak-Rodl Conjecture on Turan's theorem in random graphs.Comment: 33 pages, minor improvements thanks to two referee

    The Poset of Hypergraph Quasirandomness

    Full text link
    Chung and Graham began the systematic study of k-uniform hypergraph quasirandom properties soon after the foundational results of Thomason and Chung-Graham-Wilson on quasirandom graphs. One feature that became apparent in the early work on k-uniform hypergraph quasirandomness is that properties that are equivalent for graphs are not equivalent for hypergraphs, and thus hypergraphs enjoy a variety of inequivalent quasirandom properties. In the past two decades, there has been an intensive study of these disparate notions of quasirandomness for hypergraphs, and an open problem that has emerged is to determine the relationship between them. Our main result is to determine the poset of implications between these quasirandom properties. This answers a recent question of Chung and continues a project begun by Chung and Graham in their first paper on hypergraph quasirandomness in the early 1990's.Comment: 43 pages, 1 figur
    corecore