253 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Integrality and cutting planes in semidefinite programming approaches for combinatorial optimization

    Get PDF
    Many real-life decision problems are discrete in nature. To solve such problems as mathematical optimization problems, integrality constraints are commonly incorporated in the model to reflect the choice of finitely many alternatives. At the same time, it is known that semidefinite programming is very suitable for obtaining strong relaxations of combinatorial optimization problems. In this dissertation, we study the interplay between semidefinite programming and integrality, where a special focus is put on the use of cutting-plane methods. Although the notions of integrality and cutting planes are well-studied in linear programming, integer semidefinite programs (ISDPs) are considered only recently. We show that manycombinatorial optimization problems can be modeled as ISDPs. Several theoretical concepts, such as the ChvĂĄtal-Gomory closure, total dual integrality and integer Lagrangian duality, are studied for the case of integer semidefinite programming. On the practical side, we introduce an improved branch-and-cut approach for ISDPs and a cutting-plane augmented Lagrangian method for solving semidefinite programs with a large number of cutting planes. Throughout the thesis, we apply our results to a wide range of combinatorial optimization problems, among which the quadratic cycle cover problem, the quadratic traveling salesman problem and the graph partition problem. Our approaches lead to novel, strong and efficient solution strategies for these problems, with the potential to be extended to other problem classes

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Proactive Adaptation in Self-Organizing Task-based Runtime Systems for Different Computing Classes

    Get PDF
    Moderne Computersysteme bieten Anwendern und Anwendungsentwicklern ein hohes Maß an ParallelitĂ€t und HeterogenitĂ€t. Die effiziente Nutzung dieser Systeme erfordert jedoch tiefgreifende Kenntnisse, z.B. der darunterliegenden Hardware-Plattform und den notwendigen Programmiermodellen, und umfangreiche Arbeit des Entwicklers. In dieser Thesis bezieht sich die effiziente Nutzung auf die GesamtausfĂŒhrungszeit der Anwendungen, den Energieverbrauch des Systems, die maximale Temperatur der Verarbeitungseinheiten und die ZuverlĂ€ssigkeit des Systems. Neben den verschiedenen Optimierungszielen muss ein Anwendungsentwickler auch die spezifischen EinschrĂ€nkungen und Randbedingungen des Systems berĂŒcksichtigen, wie z. B. Deadlines oder Sicherheitsgarantien, die mit bestimmten Anwendungsbereichen einhergehen. Diese KomplexitĂ€t heterogener Systeme macht es unmöglich, alle potenziellen SystemzustĂ€nde und UmwelteinflĂŒsse, die zur Laufzeit auftreten können, vorherzusagen. Die System- und Anwendungsentwickler sind somit nicht in der Lage, zur Entwurfszeit festzulegen, wie das System und die Anwendungen in allen möglichen Situationen reagieren sollen. Daher ist es notwendig, die Systeme zur Laufzeit der aktuellen Situation anzupassen, um ihr Verhalten entsprechend zu optimieren. In eingebetteten Systemen mit begrenzten KĂŒhlkapazitĂ€ten muss z.B. bei Erreichen einer bestimmten Temperaturschwelle eine Lastverteilung vorgenommen, die Frequenz verringert oder Verarbeitungseinheiten abgeschaltet werden, um die WĂ€rmeentwicklung zu reduzieren. Normalerweise reicht es aber nicht aus, einfach nur auf einen ungĂŒnstigen Systemzustand zu reagieren. Das Ziel sollte darin bestehen, ungĂŒnstige oder fehlerhafte SystemzustĂ€nde vor dem Auftreten zu vermeiden, um die Notwendigkeit des Aufrufs von Notfallfunktionen zu verringern und die Benutzerfreundlichkeit zu verbessern. Anstatt beispielsweise die WĂ€rmeentwicklung durch eine Neuverteilung der Anwendungen zu reduzieren, könnten proaktive Mechanismen kritische Temperaturen bereits im Vorfeld vermeiden, indem sie bestimmte unkritische Aufgaben verzögern oder deren Genauigkeit oder QoS verringern. Auf diese Weise wird die Systemlast reduziert, bevor ein kritischer Punkt erreicht wird. Lösungen des aktuellen Stands der Technik wie einheitliche Programmiersprachen oder Laufzeitsysteme adressieren einige der oben genannten Herausforderungen, jedoch existiert kein Ansatz, der in der Lage ist, eine Optimierung mehrerer sich widersprechender Zielfunktionen dynamisch und vor allem proaktiv durchzufĂŒhren. Ein Konzept, das diese komplexe Aufgabe fĂŒr den Entwickler ĂŒbernimmt und eine Möglichkeit zur dynamischen und proaktiven Anpassung an VerĂ€nderungen bietet, ist die Selbstorganisation. Selbstorganisation ist jedoch definiert als ein Prozess ohne externe Kontrolle oder Steuerung. Im Kontext der Systemoptimierung kann dies leicht zu unerwĂŒnschten Ergebnissen fĂŒhren. Ein Ansatz, der Selbstorganisation mit einem Kontrollmechanismus kombiniert, welcher auf Robustheit und WiderstandsfĂ€higkeit gegenĂŒber Ă€ußeren Störungen abzielt, ist Organic Computing. Das bestimmende Merkmal von Organic Computing ist eine Observer/Controller-Architektur. Das Konzept dieser Architektur besteht darin, den aktuellen Zustand des Systems und der Umgebung zu ĂŒberwachen, diese Daten zu analysieren und auf der Grundlage dieser Analyse Entscheidungen ĂŒber das zukĂŒnftige Systemverhalten zu treffen. Organic Computing ermöglicht es also auf der Grundlage der vergangenen und des aktuellen Zustands proaktiv Mechanismen auszuwĂ€hlen und auszulösen, die das System optimieren und unerwĂŒnschte ZustĂ€nde vermeiden. Um die Vorteile des Organic Computings auf moderne heterogene Systeme zu ĂŒbertragen, kombiniere ich den Organic Computing-Ansatz mit einem Laufzeitsystem. Laufzeitsysteme sind ein vielversprechender Kandidat fĂŒr die Umsetzung des Organic Computing-Ansatzes, da sie bereits die AusfĂŒhrung von Anwendungen ĂŒberwachen und steuern. Insbesondere betrachte und bearbeite ich in dieser Dissertation die folgenden Forschungsthemen, indem ich die Konzepte des Organic Computings und der Laufzeitsysteme kombiniere: ‱ Erfassen des aktuellen Systemzustands durch Überwachung von Sensoren und Performance Countern ‱ Vorhersage zukĂŒnftiger SystemzustĂ€nde durch Analyse des vergangenen Verhaltens ‱ Nutzung von Zustandsinformationen zur proaktiven Anpassung des Systems Ich erweitere das Thema der Erfassung von SystemzustĂ€nden auf zwei Arten. ZunĂ€chst fĂŒhre ich eine neuartige heuristische Metrik zur Berechnung der ZuverlĂ€ssigkeit einer Verarbeitungseinheit ein, die auf symptombasierter Fehlererkennung basiert. Symptombasierte Fehlererkennung ist eine leichtgewichtige Methode zur dynamischen Erkennung von soften Hardware-Fehlern durch Überwachung des AusfĂŒhrungsverhaltens mit Performance Countern. Die dynamische Erkennung von Fehlern ermöglicht dann die Berechnung einer heuristischen Fehlerrate einer Verarbeitungseinheit in einem bestimmten Zeitfenster. Die Fehlerrate wird verwendet, um die Anzahl der erforderlichen AusfĂŒhrungen einer Anwendung zu berechnen, um eine bestimmte ErgebniszuverlĂ€ssigkeit, also eine Mindestwahrscheinlichkeit fĂŒr ein korrektes Ergebnis, zu gewĂ€hrleisten. Ein wichtiger Aspekt der Zustandserfassung ist die Minimierung des entstehenden Overheads. Ich verringere die Anzahl der fĂŒr OpenMP-Tasks notwendigen Profiling-DurchlĂ€ufe durch Thread-Interpolation und ÜberprĂŒfungen des Skalierungsverhaltens. ZusĂ€tzlich untersuche ich die Vorhersage von OpenCL Task-AusfĂŒhrungszeiten. Die PrĂ€diktoren der AusfĂŒhrungszeiten werden mit verschiedenen maschinellen Lernalgorithmen trainiert. Als Input werden Profile der Kernel verwendet, die durch statische Codeanalyse erstellt wurden. Um in dieser Dissertation zukĂŒnftige SystemzustĂ€nde vorherzusagen, sollen Anwendungen vorausgesagt werden, die in naher Zukunft im System vorkommen werden. In Kombination mit der AusfĂŒhrungsdatenbank ermöglicht dies die SchĂ€tzung der anstehenden Kosten, die das System zu bewĂ€ltigen hat. In dieser Arbeit werden zwei Mechanismen zur Vorhersage von Anwendungen/Tasks entwickelt. Der erste PrĂ€diktor zielt darauf ab, neue Instanzen unabhĂ€ngiger Tasks vorherzusagen. Der zweite Mechanismus betrachtet AusfĂŒhrungsmuster abhĂ€ngiger Anwendungen und sagt auf dieser Grundlage zukĂŒnftig auftretende Anwendungen vorher. Beide Mechanismen verwenden eine Vorhersagetabelle, die auf Markov-PrĂ€diktoren und dem Abgleich von Mustern basiert. In dieser Arbeit wird das Wissen, das durch die SystemĂŒberwachung und die Vorhersage zukĂŒnftiger Anwendungen gewonnen wird, verwendet, um die Optimierungsziele des Systems proaktiv in Einklang zu bringen und zu gewichten. Dies geschieht durch eine Reihe von Regeln, die eine Systemzustandsbeschreibung, bestehend aus dem aktuellen Zustand, Vorhersagen und Randbedingungen bzw. BeschrĂ€nkungen, auf einen Vektor aus Gewichten abbilden. Zum Erlernen der Regelmenge wird ein Extended Classifer System (XCS) eingesetzt. Das XCS ist in eine hierarchische Architektur eingebettet, die nach den Prinzipien des Organic Computing entworfen wurde. Eine wichtige Designentscheidung ist dabei die Auslagerung der Erstellung neuer Regeln an einen Offline-Algorithmus, der einen Simulator nutzt und parallel zum normalen Systemablauf ausgefĂŒhrt wird. Dadurch wird sichergestellt, dass keine ungetesteten Regeln, deren Auswirkungen noch nicht bekannt sind, dem laufenden System hinzugefĂŒgt werden. Die sich daraus ergebenden Gewichte werden schließlich verwendet, um eine Bewertungsfunktion fĂŒr List Scheduling-Algorithmen zu erstellen. Diese Dissertation erweitert das Forschungsgebiet der Scheduling-Algorithmen durch zwei Mechanismen fĂŒr dynamisches Scheduling. Die erste Erweiterung konzentriert sich auf nicht sicherheitskritische Systeme, die PrioritĂ€ten verwenden, um die unterschiedliche Wichtigkeit von Tasks auszudrĂŒcken. Da statische PrioritĂ€ten in stark ausgelasteten Systemen zu Starvation fĂŒhren können, habe ich einen dynamischen Ageing-Mechanismus entwickelt, der dazu in der Lage ist, die PrioritĂ€ten der Tasks entsprechend der aktuellen Auslastung und ihrer Wartezeiten anzupassen. Dadurch reduziert der Mechanismus die Gesamtlaufzeit ĂŒber alle Tasks und die Wartezeit fĂŒr Tasks mit niedrigerer PrioritĂ€t. Noch ist eine große Anzahl von Anwendungen nicht dazu bereit, den hohen Grad an ParallelitĂ€t zu nutzen, den moderne Computersysteme bieten. Ein Konzept, das versucht dieses Problem zu lösen, indem es mehrere verschiedene Prozesse auf demselben Rechenknoten zur AusfĂŒhrung bringt, ist das Co-Scheduling. In dieser Dissertation stelle ich einen neuartigen Co-Scheduling-Mechanismus vor, welcher die Task-Schedules mehrerer Laufzeitsysteminstanzen optimiert, die auf demselben Rechenknoten ausgefĂŒhrt werden. Um die notwendigen Informationen zwischen den Laufzeitsysteminstanzen zu teilen, speichert der Mechanismus die Daten in Shared Memory. Sobald ein Laufzeitsystem neue Tasks in das System einfĂŒgt, prĂŒft der Mechanismus, ob die Berechnung eines neuen Schedules sinnvoll ist. Wird die Entscheidung getroffen, einen neuen Schedule zu berechnen, setzt der Mechanismus Simulated Annealing ein, um alle Tasks, die bisher noch nicht mit ihrer AusfĂŒhrung begonnen haben, neu auf AusfĂŒhrungseinheiten abzubilden. Zusammenfassend lĂ€sst sich sagen, dass diese Arbeit neuartige Mechanismen und Algorithmen sowie Erweiterungen zu verschiedenen Forschungsgebieten anbietet, um ein proaktives selbst-organisierendes System zu implementieren, das sich an neue und unbekannte Situationen anpassen kann. Dabei wird die KomplexitĂ€t fĂŒr Benutzer und Anwendungsentwickler reduziert, indem die Entscheidungsfindung in das System selbst ausgelagert wird. Gleichzeitig sorgt dieser Ansatz fĂŒr eine effiziente Nutzung der Ressourcen des Systems. Insgesamt leistet diese Arbeit die folgenden BeitrĂ€ge zur Erweiterung des Stands der Forschung: ‱ EinfĂŒhrung einer neuartigen heuristischen Metrik zur Messung der ZuverlĂ€ssigkeit von Verarbeitungseinheiten. Die Metrik basiert auf einer leichtgewichtigen Methode zur Fehlererkennung, genannt symptombasierte Fehlererkennung. Mit der symptombasierten Fehlererkennung ist es möglich, mehrere injizierte Fehlerklassen und Interferenzen, die Soft-Hardware-Fehler simulieren, sowohl auf einer CPU als auch auf einer GPU zuverlĂ€ssig zu erkennen. DarĂŒber hinaus werden diese Ergebnisse durch Welch\u27s t-Test statistisch bestĂ€tigt. ‱ Vorschlag eines Vorhersagemodells fĂŒr die AusfĂŒhrungszeit von OpenCL Kerneln, das auf statischer Code-Analyse basiert. Das Modell ist in der Lage, die schnellste Verarbeitungseinheit aus einer Menge von Verarbeitungseinheiten mit einer Genauigkeit von im schlechtesten Fall 69 %69\,\% auszuwĂ€hlen. Zum Vergleich: eine Referenzvariante, welche immer den Prozessor vorhersagt, der die meisten Kernel am schnellsten ausfĂŒhrt, erzielt eine Genauigkeit von 25 %25\,\%. Im besten Fall erreicht das Modell eine Genauigkeit von bis zu 83 %83\,\%. ‱ Bereitstellung von zwei PrĂ€diktoren fĂŒr kommende Tasks/Anwendungen. Der erste Mechanismus betrachtet unabhĂ€ngige Tasks, die stĂ€ndig neue Task-Instanzen erstellen, der zweite abhĂ€ngige Anwendungen, die AusfĂŒhrungsmuster bilden. Dabei erzielt der erste Mechanismus bei der Vorhersage der Zeitspanne zwischen zwei aufeinanderfolgenden Task-Instanzen einen maximalen\\ sMAPEsMAPE-Wert von 4,33 %4,33\,\% fĂŒr sporadische und 0,002 %0,002 \,\% fĂŒr periodische Tasks. DarĂŒber hinaus werden Tasks mit einem aperiodischen AusfĂŒhrungsschema zuverlĂ€ssig erkannt. Der zweite Mechanismus erreicht eine Genauigkeit von 77,6 %77,6 \,\% fĂŒr die Vorhersage der nĂ€chsten anstehenden Anwendung und deren Startzeit. ‱ EinfĂŒhrung einer Umsetzung eines hierarchischen Organic Computing Frameworks mit dem Anwendungsgebiet Task-Scheduling. Dieses Framework enthĂ€lt u.a. ein modifiziertes XCS, fĂŒr dessen Design und Implementierung ein neuartiger Reward-Mechanismus entwickelt wird. Der Mechanismus bedient sich dabei eines speziell fĂŒr diesen Zweck entwickelten Simulators zur Berechnung von Task-AusfĂŒhrungskosten. Das XCS bildet Beschreibungen des Systemzustands auf Gewichte zur Balancierung der Optimierungsziele des Systems ab. Diese Gewichte werden in einer Bewertungsfunktion fĂŒr List Scheduling-Algorithmen verwendet. Damit wird in einem Evaluationsszenario, welches aus einem fĂŒnfmal wiederholten Muster aus Anwendungen besteht, eine Reduzierung der Gesamtlaufzeit um 10,4 %10,4\,\% bzw. 26,7 s26,7\,s, des Energieverbrauchs um 4,7 %4,7\,\% bzw. 2061,1 J2061,1\,J und der maximalen Temperatur der GPU um 3,6 %3,6\,\% bzw. 2,7K2,7 K erzielt. Lediglich die maximale Temperatur ĂŒber alle CPU-Kerne erhöht sich um 6 %6\,\% bzw. 2,3 K2,3\,K. ‱ Entwicklung von zwei Erweiterungen zur Verbesserung des dynamischen Task-Schedulings fĂŒr einzelne und mehrere Prozesse, z.B. mehrere Laufzeitsysteminstanzen. Der erste Mechanismus, ein Ageing-Algorithmus, betrachtet nicht sicherheitskritische Systeme, welche Task-PrioritĂ€ten verwenden, um die unterschiedliche Bedeutung von Anwendungen darzustellen. Da es in solchen Anwendungsszenarien in Kombination mit hoher Systemauslastung zu Starvation kommen kann, passt der Mechanismus die Task-PrioritĂ€ten dynamisch an die aktuelle Auslastung und die Task-Wartezeiten an. Insgesamt erreicht dieser Mechanismus in zwei Bewertungsszenarien eine durchschnittliche Laufzeitverbesserung von 3,75 %3,75\,\% und 3,16 %3,16\,\% bei gleichzeitiger Reduzierung der Durchlaufzeit von Tasks mit niedrigerer PrioritĂ€t um bis zu 25,67 %25,67\,\%. Der zweite Mechanismus ermöglicht die Optimierung von Schedules mehrerer Laufzeitsysteminstanzen, die parallel auf demselben Rechenknoten ausgefĂŒhrt werden. Dieser Co-Scheduling-Ansatz verwendet Shared Memory zum Austausch von Informationen zwischen den Prozessen und Simulated Annealing zur Berechnung neuer Task-Schedules. In zwei Evaluierungsszenarien erzielt der Mechanismus durchschnittliche Laufzeitverbesserungen von 19,74 %19,74\,\% und 20,91 %20,91\,\% bzw. etwa 2,7 s2,7\,s und 3 s3\,s

    Relational knowledge and representation for reinforcement learning

    Get PDF
    In reinforcement learning, an agent interacts with the environment, learns from feedback about the quality of its actions, and improves its behaviour or policy in order to maximise its expected utility. Learning efficiently in large scale problems is a major challenge. State aggregation is possible in problems with a first-order structure, allowing the agent to learn in an abstraction of the original problem which is of considerably smaller scale. One approach is to learn the Q-values of actions which are approximated by a relational function approximator. This is the basis for relational reinforcement learning (RRL). We abstract the state with first-order features which consist of only variables, thereby aggregating similar states from all problems of the same domain to abstract states. We study the limitations of RRL due to this abstraction and introduce the concepts of consistent abstraction, subsumption of problems, and abstract-equivalent problems. We propose three methods to overcome the limitations, extending the types of problems our RRL method can solve. Next, to further improve the learning efficiency, we propose to learn different types of generalised knowledge. The policy is influenced by directed exploration based on multiple types of intrinsic rewards and avoids previously encountered dead ends. In addition, we incorporate model-based techniques to provide better quality estimates of the Q-values. Transfer learning is possible by directly leveraging the generalised knowledge to accelerate learning in a new problem. Lastly, we introduce a new class of problems which considers dynamic objects and time-bounded goals. We discuss the complications these bring to RRL and present some solutions. We also propose a framework for multi-agent coordination to achieve joint goals represented by time-bounded goals by decomposing a multi-agent problem into single-agent problems. We evaluate our work empirically in six domains to demonstrate its efficacy in solving large scale problems and transfer learning

    Vehicle dispatch in high-capacity shared autonomous mobility-on-demand systems

    Get PDF
    Ride-sharing is a promising solution for transportation issues such as traffic congestion and parking land use, which are brought about by the extensive usage of private vehicles. In the near future, large-scale Shared Autonomous Mobility-on-Demand (SAMoD) systems are expected to be deployed with the realization of self-driving vehicles. It has the potential to encourage a car-free lifestyle and create a new urban mobility mode where ride-sharing is widely adopted among people. This thesis addresses the problem of improving the efficiency and quality of vehicle dispatch in high-capacity SAMoD systems. The first part of the thesis develops a dispatcher which can efficiently explore the complete candidate match space and produce the optimal assignment policy when only deterministic information is concerned. It uses an incremental search method that can quickly prune out infeasible candidates to reduce the search space. It also has an iterative re-optimization strategy to dynamically alter the assignment policy to take into account both previous and newly revealed requests. Case studies of New York City using real-world data shows that it outperforms the state-of-the-art in terms of service rate and system scalability. The dispatcher developed in this part can serve as a foundation for the next two parts, which consider two kinds of uncertain information, stochastic travel times and the dynamic distribution of requests in the long-term future, respectively. The second part of the thesis describes a framework which makes use of stochastic travel time models to optimize the reliability of vehicle dispatch. It employs a candidate match search method to generate a candidate pool, uses a set of preprocessed shortest path tables to score the candidates and provides an assignment policy that maximizes the overall score. Two different dispatch objectives are discussed: the on-time arrival probabilities of requests and the proïŹt of the platform. Experimental studies show that higher service rates, reliability and profits can be achieved by considering travel time uncertainty. The third part of the thesis presents a deep reinforcement learning based approach to optimize assignment polices in a more far-sighted way. It models the vehicle dispatch problem as a Markov Decision Process (MDP) and uses a policy evaluation method to learn a value function from the historic movements of drivers. The learned value function is employed to score candidate matches to guide a dispatcher optimizing long-term objective, and will be continually updated online to capture the real-time dynamics of the system. It is shown by experiments that the value function helps the dispatcher to yield higher service rates

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Performance-Oriented Design for Intelligent Reflecting Surface Assisted Federated Learning

    Full text link
    To efficiently exploit the massive amounts of raw data that are increasingly being generated in mobile edge networks, federated learning (FL) has emerged as a promising distributed learning technique. By collaboratively training a shared learning model on edge devices, raw data transmission and storage are replaced by the exchange of the local computed parameters/gradients in FL, which thus helps address latency and privacy issues. However, the number of resource blocks when using traditional orthogonal transmission strategies for FL linearly scales with the number of participating devices, which conflicts with the scarcity of communication resources. To tackle this issue, over-the-air computation (AirComp) has emerged recently which leverages the inherent superposition property of wireless channels to perform one-shot model aggregation. However, the aggregation accuracy in AirComp suffers from the unfavorable wireless propagation environment. In this paper, we consider the use of intelligent reflecting surfaces (IRSs) to mitigate this problem and improve FL performance with AirComp. Specifically, a performance-oriented design scheme that directly minimizes the optimality gap of the loss function is proposed to accelerate the convergence of AirComp-based FL. We first analyze the convergence behavior of the FL procedure with the absence of channel fading and noise. Based on the obtained optimality gap which characterizes the impact of channel fading and noise in different communication rounds on the ultimate performance of FL, we propose both online and offline approaches to tackle the resulting design problem. Simulation results demonstrate that such a performance-oriented design strategy can achieve higher test accuracy than the conventional isolated mean square error (MSE) minimization approach in FL.Comment: This work has been submitted to the IEEE for possible publicatio
    • 

    corecore