5,798 research outputs found

    Particulate immersed boundary method for complex fluid-particle interaction problems with heat transfer

    Get PDF
    In our recent work (Zhang et al., 2015), a Particulate Immersed Boundary Method (PIBM) for simulating fluid-particle multiphase flow was proposed and assessed in both two- and three-dimensional applications. In this study, the PIBM was extended to solve thermal interaction problems between spherical particles and fluid. The Lattice Boltzmann Method (LBM) was adopted to solve the fluid flow and temperature fields, the PIBM was responsible for the no-slip velocity and temperature boundary conditions at the particle surface, and the kinematics and trajectory of the solid particles were evaluated by the Discrete Element Method (DEM). Four case studies were implemented to demonstrate the capability of the current coupling scheme. Firstly, numerical simulation of natural convection in a two-dimensional square cavity with an isothermal concentric annulus was carried out for verification purpose. The current results were found to have good agreement with previous references. Then, sedimentation of two-and three-dimensional isothermal particles in fluid was numerically studied, respectively. The instantaneous temperature distribution in the cavity was captured. The effect of the thermal buoyancy on particle behaviors was discussed. Finally, sedimentation of three-dimensional thermosensitive particles in fluid was numerically investigated. Our results revealed that the LBM-PIBM-DEM is a promising scheme for the solution of complex fluid-particle interaction problems with heat transfer.Peer ReviewedPostprint (author's final draft

    A Review on Contact and Collision Methods for Multi-body Hydrodynamic problems in Complex Flows

    Full text link
    Modeling and direct numerical simulation of particle-laden flows have a tremendous variety of applications in science and engineering across a vast spectrum of scales from pollution dispersion in the atmosphere, to fluidization in the combustion process, to aerosol deposition in spray medication, along with many others. Due to their strongly nonlinear and multiscale nature, the above complex phenomena still raise a very steep challenge to the most computational methods. In this review, we provide comprehensive coverage of multibody hydrodynamic (MBH) problems focusing on particulate suspensions in complex fluidic systems that have been simulated using hybrid Eulerian-Lagrangian particulate flow models. Among these hybrid models, the Immersed Boundary-Lattice Boltzmann Method (IB-LBM) provides mathematically simple and computationally-efficient algorithms for solid-fluid hydrodynamic interactions in MBH simulations. This paper elaborates on the mathematical framework, applicability, and limitations of various 'simple to complex' representations of close-contact interparticle interactions and collision methods, including short-range inter-particle and particle-wall steric interactions, spring and lubrication forces, normal and oblique collisions, and mesoscale molecular models for deformable particle collisions based on hard-sphere and soft-sphere models in MBH models to simulate settling or flow of nonuniform particles of different geometric shapes and sizes in diverse fluidic systems.Comment: 37 pages, 12 Figure

    Effect of temperature gradient within a solid particle on the rotation and oscillation modes in solid-dispersed two-phase flows

    Get PDF
    Shintaro Takeuchi, Takaaki Tsutsumi and Takeo Kajishima, "Effect of temperature gradient within a solid particle on the rotation and oscillation modes in solid-dispersed two-phase flows," International Journal of Heat and Fluid Flow, Vol.43, pp.15-25, 2013.動画は論文出版後に追加したものである。 / The video was added after the paper was published

    Heat transfer and particle behaviours in dispersed two-phase flow with different heat conductivities for liquid and solid

    Full text link
    Tsutsumi, T et al. Flow Turbulence Combust (2014) 92: 103. doi:10.1007/s10494-013-9498-0The final publication is available at Springer via http://dx.doi.org/10.1007/s10494-013-9498-0
    corecore