236,828 research outputs found

    Structure and thermodynamics of platelet dispersions

    Full text link
    Various properties of fluids consisting of platelike particles differ from the corresponding ones of fluids consisting of spherical particles because interactions between platelets depend on their mutual orientations. One of the main issues in this topic is to understand how structural properties of such fluids depend on factors such as the shape of the platelets, the size polydispersity, the orientational order, and the platelet number density. A statistical mechanics approach to the problem is natural and in the last few years there has been a lot of work on the study of properties of platelet fluids. In this contribution some recent theoretical developments in the field are discussed and experimental investigations are described.Comment: 23 pages, 18 figure

    Electrical controlled rheology of a suspension of weakly conducting particles in dielectric liquid

    Get PDF
    The properties of suspensions of fine particles in dielectric liquid (electrorheological fluids) subjected to an electric field lead to a drastic change of the apparent viscosity of the fluid. For high applied fields (~ 3-5 kV/mm) the suspension congeals to a solid gel (particles fibrillate span the electrode gap) having a finite yield stress. For moderate fields the viscosity of the suspension is continuously controlled by the electric field strength. We have roposed that in DC voltage the field distribution in the solid (particles) and liquid phases of the suspension and so the attractive induced forces between particles and the yield stress of the suspension are controlled by the conductivities of the both materials. In this paper we report investigation and results obtained with nanoelectrorheological suspensions: synthesis of coated nanoparticles (size ~ 50 to 600 nm, materials Gd2O3:Tb, SiOx...), preparation of ER fluids (nanoparticles mixed in silicone oil), electrical and rheological characterization of the ER fluids. We also propose a possible explanation of the enhanced ER effect (giant ER fluids) taking into account the combined effects of the (nano)size of the particles, the Van der Waals forces between particles in contact and the electrostatic pressure in a very thin layer of insulating liquid.Comment: Article pour la conf\'{e}rence sur les charges d'espaces (CSC 6\`{e}me \'{e}dition) qui s'est d\'{e}roul\'{e}e \`{a} Tours du 3 au 7 juillet 2006. 6page

    Colloidal Jamming at Interfaces: a Route to Fluid-bicontinuous Gels

    Full text link
    Colloidal particles or nanoparticles, with equal affinity for two fluids, are known to adsorb irreversibly to the fluid-fluid interface. We present large-scale computer simulations of the demixing of a binary solvent containing such particles. The newly formed interface sequesters the colloidal particles; as the interface coarsens, the particles are forced into close contact by interfacial tension. Coarsening is dramatically curtailed, and the jammed colloidal layer seemingly enters a glassy state, creating a multiply connected, solid-like film in three dimensions. The resulting gel contains percolating domains of both fluids, with possible uses as, for example, a microreaction medium

    Ferrolubricants

    Get PDF
    Ferrolubricants have magnetized angstrom-size iron particles which stick oil to moving surfaces at all times, significantly reducing frictional wear. Magnetic fluids can be produced in families of various fluids having widely-varying chemical and physical properties

    Criticality in strongly correlated fluids

    Full text link
    In this brief review I will discuss criticality in strongly correlated fluids. Unlike simple fluids, molecules of which interact through short ranged isotropic potential, particles of strongly correlated fluids usually interact through long ranged forces of Coulomb or dipolar form. While for simple fluids mechanism of phase separation into liquid and gas was elucidated by van der Waals more than a century ago, the universality class of strongly correlated fluids, or in some cases even existence of liquid-gas phase separation remains uncertain.Comment: Proceedings of Scaling Concepts and Complex Systems, Merida, Mexic

    Theory of Suspension Segregation in Partially Filled Horizontal Rotating Cylinders

    Get PDF
    It is shown that a suspension of particles in a partially-filled, horizontal, rotating cylinder is linearly unstable towards axial segregation and an undulation of the free surface at large enough particle concentrations. Relying on the shear-induced diffusion of particles, concentration-dependent viscosity, and the existence of a free surface, our theory provides an explanation of the experiments of Tirumkudulu et al., Phys. Fluids 11, 507-509 (1999); ibid. 12, 1615 (2000).Comment: Accepted for publication in Phys Fluids (Lett) 10 pages, two eps figure
    corecore