2,103 research outputs found

    Implicit Decals: Interactive Editing of Repetitive Patterns on Surfaces

    Get PDF
    11 pagesInternational audienceTexture mapping is an essential component for creating 3D models and is widely used in both the game and the movie industries. Creating texture maps has always been a complex task and existing methods carefully balance flexibility with ease of use. One difficulty in using texturing is the repeated placement of individual textures over larger areas. In this paper we propose a method which uses decals to place images onto a model. Our method allows the decals to compete for space and to deform as they are being pushed by other decals. A spherical field function is used to determine the position and the size of each decal and the deformation applied to fit the decals. The decals may span multiple objects with heterogeneous representations. Our method does not require an explicit parameterization of the model. As such, varieties of patterns including repeated patterns like rocks, tiles, and scales can be mapped. We have implemented the method using the GPU where placement, size, and orientation of thousands of decals are manipulated in real time

    A fast framework construction and visualization method for particle-based fluid

    Get PDF
    © 2017, The Author(s). Fast and vivid fluid simulation and visualization is a challenge topic of study in recent years. Particle-based simulation method has been widely used in the art animation modeling and multimedia field. However, the requirements of huge numerical calculation and high quality of visualization usually result in a poor computing efficiency. In this work, in order to improve those issues, we present a fast framework for 3D fluid fast constructing and visualization which parallelizes the fluid algorithm based on the GPU computing framework and designs a direct surface visualization method for particle-based fluid data such as WCSPH, IISPH, and PCISPH. Considering on conventional polygonization or adaptive mesh methods may incur high computing costs and detail losses, an improved particle-based method is provided for real-time fluid surface rendering with the screen-space technology and the utilities of the modern graphics hardware to achieve the high performance rendering; meanwhile, it effectively protects fluid details. Furthermore, to realize the fast construction of scenes, an optimized design of parallel framework and interface is also discussed in our paper. Our method is convenient to enforce, and the results demonstrate a significant improvement in the performance and efficiency by being compared with several examples

    New techniques for the scientific visualization of three-dimensional multi-variate and vector fields

    Full text link
    • …
    corecore