1,233 research outputs found

    A generalized approach to construct benchmark problems for dynamic optimization

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2008.There has been a growing interest in studying evolutionary algorithms in dynamic environments in recent years due to its importance in real applications. However, different dynamic test problems have been used to test and compare the performance of algorithms. This paper proposes a generalized dynamic benchmark generator (GDBG) that can be instantiated into the binary space, real space and combinatorial space. This generator can present a set of different properties to test algorithms by tuning some control parameters. Some experiments are carried out on the real space to study the performance of the generator.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Traveling Salesman Problem

    Get PDF
    The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the research community to consider a problem from the everyday life from a mathematical point of view. A traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the research community because it arises as a natural subproblem in many applications concerning the every day life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that the total cost of a solution is determined by adding up the costs arising from two successively items, can be modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no real importance

    Adjustability of a discrete particle swarm optimization for the dynamic TSP

    Get PDF
    This paper presents a detailed study of the discrete particle swarm optimization algorithm (DPSO) applied to solve the dynamic traveling salesman problem which has many practical applications in planning, logistics and chip manufacturing. The dynamic version is especially important in practical applications in which new circumstances, e.g., a traffic jam or a machine failure, could force changes to the problem specification. The DPSO algorithm was enriched with a pheromone memory which is used to guide the search process similarly to the ant colony optimization algorithm. The paper extends our previous work on the DPSO algorithm in various ways. Firstly, the performance of the algorithm is thoroughly tested on a set of newly generated DTSP instances which differ in the number and the size of the changes. Secondly, the impact of the pheromone memory on the convergence of the DPSO is investigated and compared with the version without a pheromone memory. Moreover, the results are compared with two ant colony optimization algorithms, namely the (Formula presented.)–(Formula presented.) ant system (MMAS) and the population-based ant colony optimization (PACO). The results show that the DPSO is able to find high-quality solutions to the DTSP and its performance is competitive with the performance of the MMAS and the PACO algorithms. Moreover, the pheromone memory has a positive impact on the convergence of the algorithm, especially in the face of dynamic changes to the problem’s definition

    Bio-inspired Algorithms for TSP and Generalized TSP

    Get PDF

    An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems

    Get PDF
    Bat algorithm is a population metaheuristic proposed in 2010 which is based on the echolocation or bio-sonar characteristics of microbats. Since its first implementation, the bat algorithm has been used in a wide range of fields. In this paper, we present a discrete version of the bat algorithm to solve the well-known symmetric and asymmetric traveling salesman problems. In addition, we propose an improvement in the basic structure of the classic bat algorithm. To prove that our proposal is a promising approximation method, we have compared its performance in 37 instances with the results obtained by five different techniques: evolutionary simulated annealing, genetic algorithm, an island based distributed genetic algorithm, a discrete firefly algorithm and an imperialist competitive algorithm. In order to obtain fair and rigorous comparisons, we have conducted three different statistical tests along the paper: the Student's tt-test, the Holm's test, and the Friedman test. We have also compared the convergence behaviour shown by our proposal with the ones shown by the evolutionary simulated annealing, and the discrete firefly algorithm. The experimentation carried out in this study has shown that the presented improved bat algorithm outperforms significantly all the other alternatives in most of the cases
    corecore