1,493 research outputs found

    Fuzzy Adaptive Tuning of a Particle Swarm Optimization Algorithm for Variable-Strength Combinatorial Test Suite Generation

    Full text link
    Combinatorial interaction testing is an important software testing technique that has seen lots of recent interest. It can reduce the number of test cases needed by considering interactions between combinations of input parameters. Empirical evidence shows that it effectively detects faults, in particular, for highly configurable software systems. In real-world software testing, the input variables may vary in how strongly they interact, variable strength combinatorial interaction testing (VS-CIT) can exploit this for higher effectiveness. The generation of variable strength test suites is a non-deterministic polynomial-time (NP) hard computational problem \cite{BestounKamalFuzzy2017}. Research has shown that stochastic population-based algorithms such as particle swarm optimization (PSO) can be efficient compared to alternatives for VS-CIT problems. Nevertheless, they require detailed control for the exploitation and exploration trade-off to avoid premature convergence (i.e. being trapped in local optima) as well as to enhance the solution diversity. Here, we present a new variant of PSO based on Mamdani fuzzy inference system \cite{Camastra2015,TSAKIRIDIS2017257,KHOSRAVANIAN2016280}, to permit adaptive selection of its global and local search operations. We detail the design of this combined algorithm and evaluate it through experiments on multiple synthetic and benchmark problems. We conclude that fuzzy adaptive selection of global and local search operations is, at least, feasible as it performs only second-best to a discrete variant of PSO, called DPSO. Concerning obtaining the best mean test suite size, the fuzzy adaptation even outperforms DPSO occasionally. We discuss the reasons behind this performance and outline relevant areas of future work.Comment: 21 page

    Novel metaheuristic hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation

    Get PDF
    © 2014 Elsevier B.V. All rights reserved. This paper presents hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation and their application to control of a flexible manipulator system. Spiral dynamic algorithm (SDA) has faster convergence speed and good exploitation strategy. However, the incorporation of constant radius and angular displacement in its spiral model causes the exploration strategy to be less effective hence resulting in low accurate solution. Bacteria chemotaxis on the other hand, is the most prominent strategy in bacterial foraging algorithm. However, the incorporation of a constant step-size for the bacteria movement affects the algorithm performance. Defining a large step-size results in faster convergence speed but produces low accuracy while de.ning a small step-size gives high accuracy but produces slower convergence speed. The hybrid algorithms proposed in this paper synergise SDA and bacteria chemotaxis and thus introduce more effective exploration strategy leading to higher accuracy, faster convergence speed and low computation time. The proposed algorithms are tested with several benchmark functions and statistically analysed via nonparametric Friedman and Wilcoxon signed rank tests as well as parametric t-test in comparison to their predecessor algorithms. Moreover, they are used to optimise hybrid Proportional-Derivative-like fuzzy-logic controller for position tracking of a flexible manipulator system. The results show that the proposed algorithms significantly improve both convergence speed as well as fitness accuracy and result in better system response in controlling the flexible manipulator

    Cúmulo de partículas coevolutivo cooperativo usando lógica borrosa para la optimización a gran escala

    Get PDF
    A cooperative coevolutionary framework can improve the performance of optimization algorithms on large-scale problems. In this paper, we propose a new Cooperative Coevolutionary algorithm to improve our preliminary work, FuzzyPSO2. This new proposal, called CCFPSO, uses the random grouping technique that changes the size of the subcomponents in each generation. Unlike FuzzyPSO2, CCFPSO’s re-initialization of the variables, suggested by the fuzzy system, were performed on the particles with the worst fitness values. In addition, instead of updating the particles based on the global best particle, CCFPSO was updated considering the personal best particle and the neighborhood best particle. This proposal was tested on large-scale problems that resemble real-world problems (CEC2008, CEC2010), where the performance of CCFPSO was favorable in comparison with other state-of-the-art PSO versions, namely CCPSO2, SLPSO, and CSO. The experimental results indicate that using a Cooperative Coevolutionary PSO approach with a fuzzy logic system can improve results on high dimensionality problems (100 to 1000 variables).Un marco coevolutivo cooperativo puede mejorar el rendimiento de los algoritmos de optimización en problemas a gran escala. En este trabajo, proponemos un nuevo algoritmo coevolutivo cooperativo para mejorar nuestro trabajo preliminar, FuzzyPSO2. Esta nueva propuesta, denominada CCFPSO, utiliza la técnica de agrupación aleatoria que cambia el tamaño de los subcomponentes en cada generación. A diferencia de FuzzyPSO2, la reinicialización de las variables de CCFPSO, sugerida por el sistema difuso, se realizaron sobre las partículas con los peores valores de fitness. Además, en lugar de actualizar las partículas basándose en la mejor partícula global, CCFPSO se actualizó considerando la mejor partícula personal y la mejor partícula del vecindario. Esta propuesta se probó en problemas a gran escala que se asemejan a los del mundo real (CEC2008, CEC2010), donde el rendimiento de CCFPSO fue favorable en comparación con otras versiones de PSO del estado del arte, a saber, CCPSO2, SLPSO y CSO. Los resultados experimentales indican que el uso de un enfoque PSO coevolutivo cooperativo con un sistema de lógica difusa puede mejorar los resultados en problemas de alta dimensionalidad (de 100 a 1000 variables).Facultad de Informátic

    Optimization of Membership Functions for the Fuzzy Controllers of the Water Tank and Inverted Pendulum with Differents PSO Variants

    Get PDF
     In this paper the particle swarm optimization metaheuristic and two of its variants (inertia weight and constriction coefficient) are used as an optimization strategy for the design of optimal membership functions of fuzzy control systems for the water tank and inverted pendulum benchmark problems. Each variant has its own advantages in the algorithm, allowing the exploration and exploitation in different ways and this allows finding the optimal solution in a better way

    Particle Swarm Optimization with Adaptive Inertia Weight using Fuzzy Logic for Large-Scale Problems

    Get PDF
    In this paper an alternative approach is proposed to improve the convergence of Particle Swarm Optimization (PSO) algorithm by adapting the inertial weight parameter with a fuzzy logic system to solve large-scale optimization problems. The PSO algorithm is a population-based metaheuristic inspired by the social behavior of birds, and it has been applied to numerous optimization problems successfully. However, one of its main disadvantages is the decaying performance when applied to complex and large-scale problems. The proposed algorithm uses the fuzzy system to dynamically calculate a value of the Inertia Weight parameter during the search process to find better solutions. After carrying out experiments on a well-known benchmark for large-scale optimization, the proposed approach provides a competitive performance.Workshop: WASI – Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informátic

    Role of optimization algorithms based fuzzy controller in achieving induction motor performance enhancement.

    Get PDF
    Three-phase induction motors (TIMs) are widely used for machines in industrial operations. As an accurate and robust controller, fuzzy logic controller (FLC) is crucial in designing TIMs control systems. The performance of FLC highly depends on the membership function (MF) variables, which are evaluated by heuristic approaches, leading to a high processing time. To address these issues, optimisation algorithms for TIMs have received increasing interest among researchers and industrialists. Here, we present an advanced and efficient quantum-inspired lightning search algorithm (QLSA) to avoid exhaustive conventional heuristic procedures when obtaining MFs. The accuracy of the QLSA based FLC (QLSAF) speed control is superior to other controllers in terms of transient response, damping capability and minimisation of statistical errors under diverse speeds and loads. The performance of the proposed QLSAF speed controller is validated through experiments. Test results under different conditions show consistent speed responses and stator currents with the simulation results

    Research on UBI auto insurance pricing model based on parameter adaptive SAPSO optimal fuzzy controller

    Get PDF
    Aiming at the problem of “dynamic” accurate determination of rates in UBI auto insurance pricing, this paper proposes a UBI auto insurance pricing model based on fuzzy controller and optimizes it with a parameter adaptive SASPO. On the basis of the SASPO algorithm, the movement direction of the particles can be mutated and the direction can be dynamically controlled, the inertia weight value is given by the distance between the particle and the global optimal particle, and the learning factor is calculated according to the change of the fitness value, which realizes the parameter in the running process. Effective self-adjustment. A five-dimensional fuzzy controller is constructed by selecting the monthly driving mileage, the number of violations, and the driving time at night in the UBI auto insurance data. The weights are used to form fuzzy rules, and a variety of algorithms are used to optimize the membership function and fuzzy rules and compare them. The research results show that, compared with other algorithms, the parameter adaptive SAPAO algorithm can calculate more reasonable, accurate and high-quality fuzzy rules and membership functions when processing UBI auto insurance data. The accuracy and robustness of UBI auto insurance rate determination can realize dynamic and accurate determination of UBI auto insurance rates
    corecore