2,028 research outputs found

    Particle swarm optimization with Monte-Carlo simulation and hypothesis testing for network reliability problem

    Get PDF
    The performance of Monte-Carlo Simulation(MCS) is highly related to the number of simulation. This paper introduces a hypothesis testing technique and incorporated into a Particle Swarm Optimization(PSO) based Monte-Carlo Simulation(MCS) algorithm to solve the complex network reliability problem. The function of hypothesis testing technique is to reduce the dispensable simulation in network system reliability estimation. The proposed technique contains three components: hypothesis testing, network reliability calculation and PSO algorithm for finding solutions. The function of hypothesis testing is to abandon unpromising solutions; we use Monte-Carlo simulation to obtain network reliability; since the network reliability problem is NP-hard, PSO algorithm is applied. Since the execution time can be better decreased with the decrease of Confidence level of hypothesis testing in a range, but the solution becomes worse when the confidence level exceed a critical value, the experiment are carried out on different confidence levels for finding the critical value. The experimental results show that the proposed method can reduce the computational cost without any loss of its performance under a certain confidence level

    DESIGN OF GEODETIC NETWORKS BASED ON OUTLIER IDENTIFICATION CRITERIA: AN EXAMPLE APPLIED TO THE LEVELING NETWORK

    Get PDF
    We present a numerical simulation method for designing geodetic networks. The quality criterion considered is based on the power of the test of data snooping testing procedure. This criterion expresses the probability of the data snooping to identify correctly an outlier. In general, the power of the test is defined theoretically. However, with the advent of the fast computers and large data storage systems, it can be estimated using numerical simulation. Here, the number of experiments in which the data snooping procedure identifies the outlier correctly is counted using Monte Carlos simulations. If the network configuration does not meet the reliability criterion at some part, then it can be improved by adding required observation to the surveying plan. The method does not use real observations. Thus, it depends on the geometrical configuration of the network; the uncertainty of the observations; and the size of outlier. The proposed method is demonstrated by practical application of one simulated leveling network. Results showed the needs of five additional observations between adjacent stations. The addition of these new observations improved the internal reliability of approximately 18%. Therefore, the final designed network must be able to identify and resist against the undetectable outliers – according to the probability levels

    Adversarial Machine Learning in Network Intrusion Detection Systems

    Full text link
    Adversarial examples are inputs to a machine learning system intentionally crafted by an attacker to fool the model into producing an incorrect output. These examples have achieved a great deal of success in several domains such as image recognition, speech recognition and spam detection. In this paper, we study the nature of the adversarial problem in Network Intrusion Detection Systems (NIDS). We focus on the attack perspective, which includes techniques to generate adversarial examples capable of evading a variety of machine learning models. More specifically, we explore the use of evolutionary computation (particle swarm optimization and genetic algorithm) and deep learning (generative adversarial networks) as tools for adversarial example generation. To assess the performance of these algorithms in evading a NIDS, we apply them to two publicly available data sets, namely the NSL-KDD and UNSW-NB15, and we contrast them to a baseline perturbation method: Monte Carlo simulation. The results show that our adversarial example generation techniques cause high misclassification rates in eleven different machine learning models, along with a voting classifier. Our work highlights the vulnerability of machine learning based NIDS in the face of adversarial perturbation.Comment: 25 pages, 6 figures, 4 table

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Adaptive swarm optimisation assisted surrogate model for pipeline leak detection and characterisation.

    Get PDF
    Pipelines are often subject to leakage due to ageing, corrosion and weld defects. It is difficult to avoid pipeline leakage as the sources of leaks are diverse. Various pipeline leakage detection methods, including fibre optic, pressure point analysis and numerical modelling, have been proposed during the last decades. One major issue of these methods is distinguishing the leak signal without giving false alarms. Considering that the data obtained by these traditional methods are digital in nature, the machine learning model has been adopted to improve the accuracy of pipeline leakage detection. However, most of these methods rely on a large training dataset for accurate training models. It is difficult to obtain experimental data for accurate model training. Some of the reasons include the huge cost of an experimental setup for data collection to cover all possible scenarios, poor accessibility to the remote pipeline, and labour-intensive experiments. Moreover, datasets constructed from data acquired in laboratory or field tests are usually imbalanced, as leakage data samples are generated from artificial leaks. Computational fluid dynamics (CFD) offers the benefits of providing detailed and accurate pipeline leakage modelling, which may be difficult to obtain experimentally or with the aid of analytical approach. However, CFD simulation is typically time-consuming and computationally expensive, limiting its pertinence in real-time applications. In order to alleviate the high computational cost of CFD modelling, this study proposed a novel data sampling optimisation algorithm, called Adaptive Particle Swarm Optimisation Assisted Surrogate Model (PSOASM), to systematically select simulation scenarios for simulation in an adaptive and optimised manner. The algorithm was designed to place a new sample in a poorly sampled region or regions in parameter space of parametrised leakage scenarios, which the uniform sampling methods may easily miss. This was achieved using two criteria: population density of the training dataset and model prediction fitness value. The model prediction fitness value was used to enhance the global exploration capability of the surrogate model, while the population density of training data samples is beneficial to the local accuracy of the surrogate model. The proposed PSOASM was compared with four conventional sequential sampling approaches and tested on six commonly used benchmark functions in the literature. Different machine learning algorithms are explored with the developed model. The effect of the initial sample size on surrogate model performance was evaluated. Next, pipeline leakage detection analysis - with much emphasis on a multiphase flow system - was investigated in order to find the flow field parameters that provide pertinent indicators in pipeline leakage detection and characterisation. Plausible leak scenarios which may occur in the field were performed for the gas-liquid pipeline using a three-dimensional RANS CFD model. The perturbation of the pertinent flow field indicators for different leak scenarios is reported, which is expected to help in improving the understanding of multiphase flow behaviour induced by leaks. The results of the simulations were validated against the latest experimental and numerical data reported in the literature. The proposed surrogate model was later applied to pipeline leak detection and characterisation. The CFD modelling results showed that fluid flow parameters are pertinent indicators in pipeline leak detection. It was observed that upstream pipeline pressure could serve as a critical indicator for detecting leakage, even if the leak size is small. In contrast, the downstream flow rate is a dominant leakage indicator if the flow rate monitoring is chosen for leak detection. The results also reveal that when two leaks of different sizes co-occur in a single pipe, detecting the small leak becomes difficult if its size is below 25% of the large leak size. However, in the event of a double leak with equal dimensions, the leak closer to the pipe upstream is easier to detect. The results from all the analyses demonstrate the PSOASM algorithm's superiority over the well-known sequential sampling schemes employed for evaluation. The test results show that the PSOASM algorithm can be applied for pipeline leak detection with limited training datasets and provides a general framework for improving computational efficiency using adaptive surrogate modelling in various real-life applications

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Stochastic Modeling and Planning of Wind-Based Distributed Generators in Distribution System

    Get PDF
    The increasing strain on the Earth resulting from pollution, climate change, and finite resources has established the development of renewable energy sourcing methods, such as wind, solar and geothermal energy. By reorganizing the power system structures, and the growth in customer demand, the development of Distributed Generation (DG) play a vital role in the power system planning. Furthermore, because of the inexhaustibility and cleanliness of the renewable DG units, they are inevitably the key to a sustainable energy supply infrastructure. Nevertheless, the random nature associated with the renewable DG units produces specific challenges that have to be addressed to accelerate the expansion of the renewable DG units in the distribution system. Firstly, a new method for the determination of the wind speed distribution based on hourly wind speed data is proposed. Thus, instead of using only the well-known unimodal distributions such as Weibull and Rayleigh, a combination of probability density functions (PDFs) is taken into account, considering four sets of parameters in which each set represents a distribution. Furthermore, this model enhances the likelihood of the estimated wind speed probabilities. The maximum likelihood estimation (MLE) method for finite mixture models through the expectation-maximization (EM) algorithm is used to estimate the optimal parameters of the mixture distribution. Then two types of error measurements assessed the performance of each unimodal and multimodal distribution. As a result, the mixture of Gamma (MoG) distribution returned the most accurate results. Secondly, the results of wind speed modeling will be used in the siting and sizing wind-based DG units. The methodology addresses a probabilistic generation load model that combines all possible operating conditions of the wind-based DG units and load levels with their probabilities. The objective of siting and sizing formulation is to minimize the annual energy losses of the system as well as keeping the system constraints such as voltage limits at different buses (slack and load buses) of the system, feeder capacity, discrete size of the DG units, maximum investment on each bus, and maximum penetration limit of DG units in an acceptable limit

    A critical review of online battery remaining useful lifetime prediction methods.

    Get PDF
    Lithium-ion batteries play an important role in our daily lives. The prediction of the remaining service life of lithium-ion batteries has become an important issue. This article reviews the methods for predicting the remaining service life of lithium-ion batteries from three aspects: machine learning, adaptive filtering, and random processes. The purpose of this study is to review, classify and compare different methods proposed in the literature to predict the remaining service life of lithium-ion batteries. This article first summarizes and classifies various methods for predicting the remaining service life of lithium-ion batteries that have been proposed in recent years. On this basis, by selecting specific criteria to evaluate and compare the accuracy of different models, find the most suitable method. Finally, summarize the development of various methods. According to the research in this article, the average accuracy of machine learning is 32.02% higher than the average of the other two methods, and the prediction cycle is 9.87% shorter than the average of the other two methods

    Reliability problems in eartquake engineering

    Get PDF
    This monograph deals with the problem of reliability analysis in the field of Earthquake Engineering. Chapter 1 is devoted to a summary of the most widely used reliability methods, with emphasis on Monte Carlo and solver surrogate techniques used in the subsequent chapters. Chapter 2 presents a discussion of the Monte Carlo from the viewpoint of Information Theory. Then, a discussion is made in Chapter 3 on the selection of random variables in Earthquake Engineering. Next, some practical methods for computing failure probabilities under seismic loads are reported in Chapter 4. Finally, a method for reliability-based design optimization under seismic loads is presented in Chapter 5

    Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Get PDF
    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method
    corecore