335 research outputs found

    Swarm Intelligence

    Get PDF
    Swarm Intelligence has emerged as one of the most studied artificial intelligence branches during the last decade, constituting the fastest growing stream in the bio-inspired computation community. A clear trend can be deduced analyzing some of the most renowned scientific databases available, showing that the interest aroused by this branch has increased at a notable pace in the last years. This book describes the prominent theories and recent developments of Swarm Intelligence methods, and their application in all fields covered by engineering. This book unleashes a great opportunity for researchers, lecturers, and practitioners interested in Swarm Intelligence, optimization problems, and artificial intelligence

    Cooperative Particle Swarm Optimization for Combinatorial Problems

    Get PDF
    A particularly successful line of research for numerical optimization is the well-known computational paradigm particle swarm optimization (PSO). In the PSO framework, candidate solutions are represented as particles that have a position and a velocity in a multidimensional search space. The direct representation of a candidate solution as a point that flies through hyperspace (i.e., Rn) seems to strongly predispose the PSO toward continuous optimization. However, while some attempts have been made towards developing PSO algorithms for combinatorial problems, these techniques usually encode candidate solutions as permutations instead of points in search space and rely on additional local search algorithms. In this dissertation, I present extensions to PSO that by, incorporating a cooperative strategy, allow the PSO to solve combinatorial problems. The central hypothesis is that by allowing a set of particles, rather than one single particle, to represent a candidate solution, combinatorial problems can be solved by collectively constructing solutions. The cooperative strategy partitions the problem into components where each component is optimized by an individual particle. Particles move in continuous space and communicate through a feedback mechanism. This feedback mechanism guides them in the assessment of their individual contribution to the overall solution. Three new PSO-based algorithms are proposed. Shared-space CCPSO and multispace CCPSO provide two new cooperative strategies to split the combinatorial problem, and both models are tested on proven NP-hard problems. Multimodal CCPSO extends these combinatorial PSO algorithms to efficiently sample the search space in problems with multiple global optima. Shared-space CCPSO was evaluated on an abductive problem-solving task: the construction of parsimonious set of independent hypothesis in diagnostic problems with direct causal links between disorders and manifestations. Multi-space CCPSO was used to solve a protein structure prediction subproblem, sidechain packing. Both models are evaluated against the provable optimal solutions and results show that both proposed PSO algorithms are able to find optimal or near-optimal solutions. The exploratory ability of multimodal CCPSO is assessed by evaluating both the quality and diversity of the solutions obtained in a protein sequence design problem, a highly multimodal problem. These results provide evidence that extended PSO algorithms are capable of dealing with combinatorial problems without having to hybridize the PSO with other local search techniques or sacrifice the concept of particles moving throughout a continuous search space

    Developing resilient cyber-physical systems: A review of state-of-the-art malware detection approaches, gaps, and future directions

    Get PDF
    Cyber-physical systems (CPSes) are rapidly evolving in critical infrastructure (CI) domains such as smart grid, healthcare, the military, and telecommunication. These systems are continually threatened by malicious software (malware) attacks by adversaries due to their improvised tactics and attack methods. A minor configuration change in a CPS through malware has devastating effects, which the world has seen in Stuxnet, BlackEnergy, Industroyer, and Triton. This paper is a comprehensive review of malware analysis practices currently being used and their limitations and efficacy in securing CPSes. Using well-known real-world incidents, we have covered the significant impacts when a CPS is compromised. In particular, we have prepared exhaustive hypothetical scenarios to discuss the implications of false positives on CPSes. To improve the security of critical systems, we believe that nature-inspired metaheuristic algorithms can effectively counter the overwhelming malware threats geared toward CPSes. However, our detailed review shows that these algorithms have not been adapted to their full potential to counter malicious software. Finally, the gaps identified through this research have led us to propose future research directions using nature-inspired algorithms that would help in bringing optimization by reducing false positives, thereby increasing the security of such systems

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF

    Implementing Industry 4.0 in SMEs

    Get PDF
    This open access book addresses the practical challenges that Industry 4.0 presents for SMEs. While large companies are already responding to the changes resulting from the fourth industrial revolution , small businesses are in danger of falling behind due to the lack of examples, best practices and established methods and tools. Following on from the publication of the previous book ‘Industry 4.0 for SMEs: Challenges, Opportunities and Requirements’, the authors offer in this new book innovative results from research on smart manufacturing, smart logistics and managerial models for SMEs. Based on a large scale EU-funded research project involving seven academic institutions from three continents and a network of over fifty small and medium sized enterprises, the book reveals the methods and tools required to support the successful implementation of Industry 4.0 along with practical examples

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF

    Engineering brain : metaverse for future engineering

    Get PDF
    The past decade has witnessed a notable transformation in the Architecture, Engineering and Construction (AEC) industry, with efforts made both in the academia and industry to facilitate improvement of efficiency, safety and sustainability in civil projects. Such advances have greatly contributed to a higher level of automation in the lifecycle management of civil assets within a digitalised environment. To integrate all the achievements delivered so far and further step up their progress, this study proposes a novel theory, Engineering Brain, by effectively adopting the Metaverse concept in the field of civil engineering. Specifically, the evolution of the Metaverse and its key supporting technologies are first reviewed; then, the Engineering Brain theory is presented, including its theoretical background, key components and their inter-connections. Outlooks of this theory’s implementation within the AEC sector are offered, as a description of the Metaverse of future engineering. Through a comparison between the proposed Engineering Brain theory and the Metaverse, their relationships are illustrated; and how Engineering Brain may function as the Metaverse for future engineering is further explored. Providing an innovative insight into the future engineering sector, this study can potentially guide the entire industry towards its new era based on the Metaverse environment

    Efficient Learning Machines

    Get PDF
    Computer scienc
    • …
    corecore