870 research outputs found

    Emitter Location Finding using Particle Swarm Optimization

    Get PDF
    Using several spatially separated receivers, nowadays positioning techniques, which are implemented to determine the location of the transmitter, are often required for several important disciplines such as military, security, medical, and commercial applications. In this study, localization is carried out by particle swarm optimization using time difference of arrival. In order to increase the positioning accuracy, time difference of arrival averaging based two new methods are proposed. Results are compared with classical algorithms and Cramer-Rao lower bound which is the theoretical limit of the estimation error

    Accurate Range-based Indoor Localization Using PSO-Kalman Filter Fusion

    Get PDF
    Accurate indoor localization often depends on infrastructure support for distance estimation in range-based techniques. One can also trade off accuracy to reduce infrastructure investment by using relative positions of other nodes, as in range-free localization. Even for range-based methods where accurate Ultra-WideBand (UWB) signals are used, non line-of-sight (NLOS) conditions pose significant difficulty in accurate indoor localization. Existing solutions rely on additional measurements from sensors and typically correct the noise using a Kalman filter (KF). Solutions can also be customized to specific environments through extensive profiling. In this work, a range-based indoor localization algorithm called PSO - Kalman Filter Fusion (PKFF) is proposed that minimizes the effects of NLOS on localization error without using additional sensors or profiling. Location estimates from a windowed Particle Swarm Optimization (PSO) and a dynamically adjusted KF are fused based on a weighted variance factor. PKFF achieved a 40% lower 90-percentile root-mean-square localization error (RMSE) over the standard least squares trilateration algorithm at 61 cm compared to 102 cm

    A Robust Frame of WSN Utilizing Localization Technique

    Get PDF
    Wireless sensor networks are becoming increasingly popular due to their low cost and wide applicability to support a large number of diverse application areas. Localization of sensor nodes is a fundamental requirement that makes the sensor data meaningful. A wireless sensor network (WSN) consist of spatially distributed autonomous devices using sensors to monitor cooperatively physical or environmental conditions such as temperature, sound, vibration, pressure, motion or pollutants at different locations. The development of wireless sensor networks was originally motivated by a military application like battlefield surveillance. Node localization is required to report the origin of events, assist group querying of sensors, routing and to answer questions on the network coverage. So one of the fundamental challenges in wireless sensor network is node localization. This paper discusses different approaches of node localization discovery in wireless sensor networks. The overview of the schemes proposed by different scholars for the improvement of localization in wireless sensor networks is also presented. Keywords: Localization, Particle Swarm Optimization, Received Signal Strength, Angle of Arrival

    Wireless Sensor Networks for Underwater Localization: A Survey

    Get PDF
    Autonomous Underwater Vehicles (AUVs) have widely deployed in marine investigation and ocean exploration in recent years. As the fundamental information, their position information is not only for data validity but also for many real-world applications. Therefore, it is critical for the AUV to have the underwater localization capability. This report is mainly devoted to outline the recent advance- ment of Wireless Sensor Networks (WSN) based underwater localization. Several classic architectures designed for Underwater Acoustic Sensor Network (UASN) are brie y introduced. Acoustic propa- gation and channel models are described and several ranging techniques are then explained. Many state-of-the-art underwater localization algorithms are introduced, followed by the outline of some existing underwater localization systems

    Separation of radio-frequency sources and localization of partial discharges in noisy environments

    Get PDF
    The detection of partial discharges (PD) can help in early-warning detection systems to protect critical assets in power systems. The radio-frequency emission of these events can be measured with antennas even when the equipment is in service which reduces dramatically the maintenance costs and favours the implementation of condition-based monitoring systems. The drawback of these type of measurements is the difficulty of having a reference signal to study the events in a classical phase-resolved partial discharge pattern (PRPD). Therefore, in open-air substations and overhead lines where interferences from radio and TV broadcasting and mobile communications are important sources of noise and other pulsed interferences from rectifiers or inverters can be present, it is difficult to identify whether there is partial discharges activity or not. This paper proposes a robust method to separate the events captured with the antennas, identify which of them are partial discharges and localize the piece of equipment that is having problems. The separation is done with power ratio (PR) maps based on the spectral characteristics of the signal and the identification of the type of event is done localizing the source with an array of four antennas. Several classical methods to calculate the time differences of arrival (TDOA) of the emission to the antennas have been tested, and the localization is done using particle swarm optimization (PSO) to minimize a distance function.Tests were done in the High-Voltage Research and Test Laboratory (LINEALT) at Universidad Carlos III de Madrid

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    An Effective PSO-Based Node Localization Scheme for Wireless Sensor Networks

    Get PDF
    [[abstract]]Wireless sensor networks (WSNs) usually employ different ranging techniques to measure the distance between an unknown node and its neighboring anchor nodes, and based on the measured distance to estimate the position of the unknown node. This paper presents an effective Particle Swarm Optimization (PSO)-based Localization Scheme using the Radio Signal Strength (RSS) ranging technique. Modified from the iterative multilateration algorithm, our scheme is unique in adopting the location data of remote anchors provided by the closest neighbor anchors of an unknown node to estimate the unknown nodepsilas position and using the PSO algorithm to further reduce error accumulation. The new scheme meanwhile takes in a modified DV-distance approach to raise the success ratios of locating unknown nodes. Compared with related schemes, our scheme is shown through simulations to perform constantly better in increasing localization success ratios and decreasing location errors -- at reduced cost.[[conferencetype]]朋際[[conferencedate]]20081201~20081204[[iscallforpapers]]Y[[conferencelocation]]Dunedin , New Zealan
    • 

    corecore