276 research outputs found

    Review on integrated scheduling of quay crane and yard truck

    Get PDF
    With the development of port shipping trade, the increasing container throughput has brought pressure to port operation. Research literatures on quay crane scheduling, yard truck scheduling and integrated scheduling of quay crane and yard truck are reviewed in turn. Combined with the current research, the future research direction of integrated scheduling of quay crane and yard truck is proposed

    Adaptive autotuning mathematical approaches for integrated optimization of automated container terminal

    Get PDF
    With the development of automated container terminals (ACTs), reducing the loading and unloading time of operation and improving the working efficiency and service level have become the key point. Taking into account the actual operation mode of loading and unloading in ACTs, a mixed integer programming model is adopted in this study to minimize the loading and unloading time of ships, which can optimize the integrated scheduling of the gantry cranes (QCs), automated guided vehicles (AGVs), and automated rail-mounted gantries (ARMGs) in automated terminals. Various basic metaheuristic and improved hybrid algorithms were developed to optimize the model, proving the effectiveness of the model to obtain an optimized scheduling scheme by numerical experiments and comparing the different performances of algorithms. The results show that the hybrid GA-PSO algorithm with adaptive autotuning approaches by fuzzy control is superior to other algorithms in terms of solution time and quality, which can effectively solve the problem of integrated scheduling of automated container terminals to improve efficiency.info:eu-repo/semantics/publishedVersio

    An Improved Discrete PSO for Tugboat Assignment Problem under a Hybrid Scheduling Rule in Container Terminal

    Get PDF
    In container terminal, tugboat plays vital role in safety of ship docking. Tugboat assignment problem under a hybrid scheduling rule (TAP-HSR) is to determine the assignment between multiple tugboats and ships and the scheduling sequence of ships to minimize the turnaround time of ships. A mixed-integer programming model and the scheduling method are described for TAP-HSR problem. Then an improved discrete PSO (IDPSO) algorithm for TAP-HSR problem is proposed to minimize the turnaround time of ships. In particular, some new redefined PSO operators and the discrete updating rules of position and velocity are developed. The experimental results show that the proposed IDPSO can get better solutions than GA and basic discrete PSO

    Nature Inspired Metaheuristics for Optimizing Problems at a Container Terminal

    Get PDF
    Nowadays, maritime transport is the backbone of the international trade of goods. Therefore, seaports play a very important role in global transport. The use of containers is significantly represented in the maritime transport. Considering the increased number of container shipments in the global transport, seaport container terminals have to be adapted to a new situation and provide the best possible service of container transfer by reducing the transfer cost and the container transit time. Therefore, there is a need for optimization of the whole container transport process within the terminal. The logistic problems of the container terminals have become very complex and logistics experts cannot manually adjust the operations of terminal processes that will optimize the usage of resources. Hence, to achieve further improvements of terminal logistics, there is a need to introduce scientific methods such as metaheuristics that will enable better and optimized use of the terminal resources in an automated way. There is a large number of research papers that have successfully proposed the solutions of optimizing the container logistic problems with well-known metaheuristics inspired by the nature. However, there is a continuous emergence of new nature inspired metaheuristics today, like artificial bee colony algorithm, firefly algorithm and bat algorithm, that outperform the well-known metaheuristics considering the most popular optimization problems like travel salesman problem. Considering these results of comparing algorithms, we assume that better results of optimization of container terminal logistic problems can be achieved by introducing these new nature inspired metaheuristics. In this paper we have described and classified the main subsystems of the container terminal and its logistic problems that need to be optimized. We have also presented a review of new nature inspired metaheuristics (bee, firefly and bat algorithm) that could be used in the optimization of these problems within the terminal

    Discrete-Event Control and Optimization of Container Terminal Operations

    Get PDF
    This thesis discusses the dynamical modeling of complex container terminal operations. In the current literature, the systems are usually modeled in static way using linear programming techniques. This setting does not completely capture the dynamic aspects in the operations, where information about external factors such as ships and trucks arrivals or departures and also the availability of terminal's equipment can always change. We propose dynamical modeling of container terminal operations using discrete-event systems (DES) modeling framework. The basic framework in this thesis is the DES modeling for berth and quay crane allocation problem (BCAP) where the systems are not only dynamic, but also asynchronous. We propose a novel berth and QC allocation method, namely the model predictive allocation (MPA) which is based on model predictive control principle and rolling horizon implementation. The DES models with asynchronous event transition is mathematically analyzed to show the efficacy of our method. We study an optimal input allocation problem for a class of discrete-event systems with dynamic input sequence (DESDIS). We show that in particular, the control input can be obtained by the minimization/maximization of the present input sequence only. We have shown that the proposed approach performed better than the existing method used in the studied terminal and state-of-the-art methods in the literature

    Cross-docking: A systematic literature review

    Get PDF
    This paper identifies the major research concepts, techniques, and models covered in the cross-docking literature. A systematic literature review is conducted using the BibExcel bibliometric analysis and Gephi network analysis tools. A research focus parallelship network (RFPN) analysis and keyword co-occurrence network (KCON) analysis are used to identify the primary research themes. The RFPN results suggest that vehicle routing, inventory control, scheduling, warehousing, and distribution are most studied. Of the optimization and simulation techniques applied in cross-docking, linear and integer programming has received much attention. The paper informs researchers interested in investigating cross-docking through an integrated perspective of the research gaps in this domain. This paper systematically reviews the literature on cross-docking, identifies the major research areas, and provides a survey of the techniques and models adopted by researchers in the areas related to cross-docking

    Sequence-Based Simulation-Optimization Framework With Application to Port Operations at Multimodal Container Terminals

    Get PDF
    It is evident in previous works that operations research and mathematical algorithms can provide optimal or near-optimal solutions, whereas simulation models can aid in predicting and studying the behavior of systems over time and monitor performance under stochastic and uncertain circumstances. Given the intensive computational effort that simulation optimization methods impose, especially for large and complex systems like container terminals, a favorable approach is to reduce the search space to decrease the amount of computation. A maritime port can consist of multiple terminals with specific functionalities and specialized equipment. A container terminal is one of several facilities in a port that involves numerous resources and entities. It is also where containers are stored and transported, making the container terminal a complex system. Problems such as berth allocation, quay and yard crane scheduling and assignment, storage yard layout configuration, container re-handling, customs and security, and risk analysis become particularly challenging. Discrete-event simulation (DES) models are typically developed for complex and stochastic systems such as container terminals to study their behavior under different scenarios and circumstances. Simulation-optimization methods have emerged as an approach to find optimal values for input variables that maximize certain output metric(s) of the simulation. Various traditional and nontraditional approaches of simulation-optimization continue to be used to aid in decision making. In this dissertation, a novel framework for simulation-optimization is developed, implemented, and validated to study the influence of using a sequence (ordering) of decision variables (resource levels) for simulation-based optimization in resource allocation problems. This approach aims to reduce the computational effort of optimizing large simulations by breaking the simulation-optimization problem into stages. Since container terminals are complex stochastic systems consisting of different areas with detailed and critical functions that may affect the output, a platform that accurately simulates such a system can be of significant analytical benefit. To implement and validate the developed framework, a large-scale complex container terminal discrete-event simulation model was developed and validated based on a real system and then used as a testing platform for various hypothesized algorithms studied in this work

    Simultaneous allocation and scheduling of quay cranes, yard cranes, and trucks in dynamical integrated container terminal operations

    Get PDF
    We present a dynamical modeling of integrated (end-to-end) container terminal operations using finite state machine (FSM) framework where each state machine is represented by a discrete-event system (DES) formulation. The hybrid model incorporates the operations of quay cranes (QC), internal trucks (IT), and yard cranes (YC) and also the selection of storage positions in container yard (CY) and vessel bays. The QC and YC are connected by the IT in our models. As opposed to the commonly adapted modeling in container terminal operations, in which the entire information/inputs to the systems are known for a defined planning horizon, in this research we use real-time trucks, crane, and container storage operations information, which are always updated as the time evolves. The dynamical model shows that the predicted state variables closely follow the actual field data from a container terminal in Tanjung Priuk, Jakarta, Indonesia. Subsequently, using the integrated container terminal hybrid model, we proposed a model predictive algorithm (MPA) to obtain the near-optimal solution of the integrated terminal operations problem, namely the simultaneous allocation and scheduling of QC, IT, and YC, as well as selecting the storage location for the inbound and outbound containers in the CY and vessel. The numerical experiment based on the extensive Monte Carlo simulation and real dataset show that the MPA outperforms by 3-6% both of the policies currently implemented by the terminal operator and the state-of-the-art method from the current literature

    Simulation-optimization models for the dynamic berth allocation problem

    Get PDF
    Container terminals are designed to provide support for the continuous changes in container ships. The most common schemes used for dock management are based on discrete and continuous locations. In view of the steadily growing trend in increasing container ship size, more flexible berth allocation planning is mandatory. The consideration of continuous location in the container terminal is a good option. This paper addresses the berth allocation problem with continuous dock, which is called dynamic berth allocation problem (DBAP). We propose a mathematical model and develop a heuristic procedure, based on a genetic algorithm, to solve the corresponding mixed integer problem. Allocation planning aims to minimise distances travelled by the forklifts and the quay crane, for container loading and unloading operations for each ship, according to the quay crane scheduling. Simulations are undertaken using Arena software, and experimental analysis is carried out for the most important container terminal in Spain
    corecore