1,366 research outputs found

    Generating Interpretable Fuzzy Controllers using Particle Swarm Optimization and Genetic Programming

    Full text link
    Autonomously training interpretable control strategies, called policies, using pre-existing plant trajectory data is of great interest in industrial applications. Fuzzy controllers have been used in industry for decades as interpretable and efficient system controllers. In this study, we introduce a fuzzy genetic programming (GP) approach called fuzzy GP reinforcement learning (FGPRL) that can select the relevant state features, determine the size of the required fuzzy rule set, and automatically adjust all the controller parameters simultaneously. Each GP individual's fitness is computed using model-based batch reinforcement learning (RL), which first trains a model using available system samples and subsequently performs Monte Carlo rollouts to predict each policy candidate's performance. We compare FGPRL to an extended version of a related method called fuzzy particle swarm reinforcement learning (FPSRL), which uses swarm intelligence to tune the fuzzy policy parameters. Experiments using an industrial benchmark show that FGPRL is able to autonomously learn interpretable fuzzy policies with high control performance.Comment: Accepted at Genetic and Evolutionary Computation Conference 2018 (GECCO '18

    A Novel Fractional Order Fuzzy PID Controller and Its Optimal Time Domain Tuning Based on Integral Performance Indices

    Get PDF
    A novel fractional order (FO) fuzzy Proportional-Integral-Derivative (PID) controller has been proposed in this paper which works on the closed loop error and its fractional derivative as the input and has a fractional integrator in its output. The fractional order differ-integrations in the proposed fuzzy logic controller (FLC) are kept as design variables along with the input-output scaling factors (SF) and are optimized with Genetic Algorithm (GA) while minimizing several integral error indices along with the control signal as the objective function. Simulations studies are carried out to control a delayed nonlinear process and an open loop unstable process with time delay. The closed loop performances and controller efforts in each case are compared with conventional PID, fuzzy PID and PI{\lambda}D{\mu} controller subjected to different integral performance indices. Simulation results show that the proposed fractional order fuzzy PID controller outperforms the others in most cases.Comment: 30 pages, 20 figure

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Active vibration control of smart composite plates using optimized self-tuning fuzzy logic controller with optimization of placement, sizing and orientation of PFRC actuators

    Get PDF
    This paper deals with optimization of the sizing, location and orientation of the piezo-fiber reinforced composite (PFRC) actuators and active vibration control of the smart composite plates using particle-swarm optimized self-tuning fuzzy logic controller. The optimization criteria for optimal sizing, location and orientation of the PFRC actuators is based on the Gramian controllability matrix and the optimization process is performed by involving the limitation of the plates masses increase. Optimal configurations of five PFRC actuators for active vibration control of the first six modes of cantilever symmetric ((90 degrees/0 degrees/90 degrees/0 degrees)s), antisymmetric cross-ply ((90 degrees/0 degrees/90 degrees/0 degrees/90 degrees/0 degrees/90 degrees/0 degrees)) and antisymmetric angle-ply ((45 degrees/-45 degrees/45 degrees/-45 degrees/45 degrees/-45 degrees/45 degrees/-45 degrees)) composite plates are found using the particle swarm optimization. The detailed analysis of influences of the PFRC layer orientation and position (top or bottom side of composite plates), as well as bending-extension coupling of antisymmetric laminates on controllabilities is also performed. The experimental study is performed in order to validate this behavior on controllabilities of antisymmetric laminates. The particle swarm-optimized self-tuning fuzzy logic controller (FLC) adapted for the multiple-input multiple-output (MIMO) control is implemented for active vibration suppression of the plates. The membership functions as well as output matrices are optimized using the particle swarm optimization. The Mamdani and the zero-order Takagi-Sugeno-Kang fuzzy inference methods are employed and their performances are examined and compared. In order to represent the efficiency of the proposed controller, results obtained using the proposed particle swarm optimized self-tuning FLC are compared with the corresponding results in the case of the linear quadratic regulator (LQR) optimal control strategy.This is the peer reviewed version of the article: Zorić, N.; Tomović, A.; Obradović, A.; Radulović, R.; Petrović, G. R. Active Vibration Control of Smart Composite Plates Using Optimized Self-Tuning Fuzzy Logic Controller with Optimization of Placement, Sizing and Orientation of PFRC Actuators. Journal of Sound and Vibration 2019, 456, 173–198. [https://doi.org/10.1016/j.jsv.2019.05.035

    African vulture optimizer algorithm based vector control induction motor drive system

    Get PDF
    This study describes a new optimization approach for three-phase induction motor speed drive to minimize the integral square error for speed controller and improve the dynamic speed performance. The new proposed algorithm, African vulture optimizer algorithm (AVOA) optimizes internal controller parameters of a fuzzy like proportional differential (PD) speed controller. The AVOA is notable for its ease of implementation, minimal number of design parameters, high convergence speed, and low computing burden. This study compares fuzzy-like PD speed controllers optimized with AVOA to adaptive fuzzy logic speed regulators, fuzzy-like PD optimized with genetic algorithm (GA), and proportional integral (PI) speed regulators optimized with AVOA to provide speed control for an induction motor drive system. The drive system is simulated using MATLAB/Simulink and laboratory prototype is implemented using DSP-DS1104 board. The results demonstrate that the suggested fuzzy-like PD speed controller optimized with AVOA, with a speed steady state error performance of 0.5% compared to the adaptive fuzzy logic speed regulator’s 0.7%, is the optimum alternative for speed controller. The results clarify the effectiveness of the controllers based on fuzzy like PD speed controller optimized with AVOA for each performance index as it provides lower overshoot, lowers rising time, and high dynamic response

    Investigation of performance of fuzzy logic controllers optimized with the hybrid genetic-gravitational search algorithm for PMSM speed control

    Get PDF
    Fuzzy logic controllers (FLCs) are widely used to control complex systems with model uncertainty, such as alternating current motors. The design process of the FLC is generally based on the designer’s adjustments on the controller until the desired performance is achieved. However, doing the controller design in this way makes the design process quite difficult and time-consuming, so it is often impossible to make a suitable and successful design. In this study, the output membership functions of the FLC are optimized with heuristic algorithms to reach the best speed control performance of the permanent magnet synchronous motor (PMSM). This paper proposes a new hybrid algorithm called H-GA-GSA, created by combining the advantages of the Genetic Algorithm (GA) and Gravitational Search Algorithm (GSA) to optimize FLC. The paper presents a convenient adjustment and design method for optimizing FLC with heuristic algorithms considered. To evaluate the effectiveness of H-GA-GSA, the proposed hybrid algorithm has been compared with GA and GSA in terms of convergence rate, PMSM speed control performance and electromagnetic torque variations. Optimization performance and results obtained from simulation studies verify that the proposed hybrid H-GA-GSA outperforms GA and GSA
    corecore