68 research outputs found

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency

    Selfish Herd Optimisation based fractional order cascaded controllers for AGC study

    Get PDF
    In a modern, and complex power system (PS), robust controller is obligatory to regulate the frequency under uncertain load/parameter change of the system. In addition to this, presence of nonlinearities, load frequency control (LFC) of a Power System becomes more challenging which necessitates a suitable, and robust controller. Single stage controller does not perform immensely against aforesaid changed conditions. So, a novel non-integer/fractional order (FO) based two-stage controller incorporated with 2-degrees of freedom (2-DOF), derivative filter (N), named as 2-DOF-FOPIDN-FOPDN controller, is adopted to improve the dynamic performance of a 3-area power system. Each area of the power system consists of both non-renewable and renewable generating units. Again, to support the superior performance of 2-DOF-FOPIDN-FOPDN controller, it is compared with the result produced by PID, FOPID, and 2-DOF-PIDN-PDN controllers. The optimal design of these controllers is done by applying Selfish Herd Optimisation (SHO) technique. Further, the robustness of the 2-DOF-FOPIDN-FOPDN controller is authenticated by evaluating the system performance under parameter variation. The work is further extended to prove the supremacy of SHO algorithm over a recently published article based on pathfinder algorithm (PFA)

    Small-signal stability analysis of hybrid power system with quasi-oppositional sine cosine algorithm optimized fractional order PID controller

    Get PDF
    This article deals with the frequency instability problem of a hybrid energy power system (HEPS) coordinated with reheat thermal power plant. A stochastic optimization method called a sine-cosine algorithm (SCA) is, initially, applied for optimum tuning of fractional-order proportional-integral-derivative (FOPI-D) controller gains to balance the power generation and load profile. To accelerate the convergence mobility and escape the solutions from the local optimal level, quasi-oppositional based learning (Q-OBL) is integrated with SCA, which results in QOSCA. In this work, the PID-controller's derivative term is placed in the feedback path to avoid the set-point kick problem. A comparative assessment of the energy-storing devices is shown for analyzing the performances of the same in HEPS. The qualitative and quantitative evaluation of the results shows the best performance with the proposed QOSCA: FOPI-D controller compared to SCA-, grey wolf optimizer (GWO), and hyper-spherical search (HSS) optimized FOPI-D controller. It is also seen from the results that the proposed QOSCA: FOPI-D controller has satisfactory disturbance rejection ability and shows robust performance against parametric uncertainties and random load perturbation. The efficacy of the designed controller is confirmed by considering generation rate constraint, governor dead-band, and boiler dynamics effects

    Komparativna analiza primjene optimalnog upravljanja za automatsko upravljanje sustavima za proizvodnju električne energije

    Get PDF
    In this study, an attempt is made to present the application and comparative performance analysis of optimal control approach for automatic generation control (AGC) of electric power generating systems. Optimal controller is designed utilizing performance index minimization criterion. To conduct the study, various single and multi-area models with/without system nonlinearities from the literature are simulated under sudden load perturbation. In this comparative study, to corroborate the worth of optimal controller, the performance of optimal AGC controller is compared with that of I/PI controller optimized adopting recently published the best established techniques such as teacher learning based optimization (TLBO), differential evolution (DE), genetic algorithm (GA), particle swarm optimization (PSO), hybrid bacteria foraging optimization algorithm-PSO (hBFOA-PSO), craziness based PSO (CBPSO), firefly algorithm (FA), krill herd algorithm (KHA), moth-flame optimization (MFO), glow swarm optimization (GSO), simulated annealing (SA), bat algorithm (BA), stochastic fractal search (SFS) and hybrid SFS-local unimodal sampling (hSFS-LUS) technique. The simulated results are compared in terms of settling time (ST), peak undershoot (PU)/overshoot (PO), various performance indices (PIs), minimum damping ratio and system eigenvalues. A sensitivity study is conducted to certify the robustness of optimal controller.U ovom radu se razmatra primjena i komparativna analiza sustava za automatsko planiranje proizvodnje proizvođača električne energije. Sinteza optimalnog regulatora proporcionalno-integralne strukture je provedena korištenjem integralnih kriterija. Različiti modeli s jednim područjem i više područja te s i bez nelinearnosti korišteni su u simulaciji nagle promjena opterećenja. Kako bi se pokazala važnost optimalnog regulatora, u komparativnoj analizi su performanse dizajniranog optimalnog regulatora uspoređene s peformansama postignutim korištenjem I i PI regulatora sintetiziranih primjenom postojećih uobičajeno korištenih metoda kao što su "teacher learning optimization", diferencijska evolucija, genetski algoritam, optimizacija rojem čestica, "hybrid bacteria foraging" optimizacijski algoritam, "craziness based" optimizacija rojem čestica, "firefly" algoritam, "krill herd" algoritam, "moth-flame" optimizacija, "glow swarm" optimizacija, metoda simuliranog kaljenja, "bat" algoritam, stohastično fraktalno traženje (eng. "stochastic fractal search", SFS) i metoda hibridnog SFS lokalnog unimodalnog uzorkovanja. Performanse primijenjenih algoritama upravljanja vrednovani su usporedbom ostvarenih vremena ustaljivanja, iznosa podbačaja i prebačaja te drugih pokazatelja performansi, minimalnih relativnih koeficijentima prigušenja i svojstvenih vrijednosti sustava upravljanja. Provedena analiza osjetljivosti potvrđuje robusnost parametara optimalnog regulatora za širok raspon radnih točaka i parametara sustava

    Advanced and Innovative Optimization Techniques in Controllers: A Comprehensive Review

    Get PDF
    New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented

    A Hankel Matrix Based Reduced Order Model for Stability Analysis of Hybrid Power System Using PSO-GSA Optimized Cascade PI-PD Controller for Automatic Load Frequency Control

    Get PDF
    This paper presents the automatic load frequency control (ALFC) of two-area multisource hybrid power system (HPS). The interconnected HPS model consists of conventional and renewable energy sources operating in disparate combinations to balance the generation and load demand of the system. In the proffered work, the stability analysis of nonlinear dynamic HPS model was analyzed using the Hankel method of model order reduction. Also, an attempt was made to apply cascade proportional integral - proportional derivative (PI-PD) control for HPS. The gains of the controller were optimized by minimizing the integral absolute error (IAE) of area control error using particle swarm optimization-gravitational search algorithm (PSO-GSA) optimization technique. The performance of cascade control was compared with other classical controllers and the efficiency of this approach was studied for various cases of HPS model. The result shows that the cascade control produced better transient and steady state performances than those of the other classical controllers. The robustness analysis also reveals that the system overshoots/undershoots in frequency response pertaining to random change in wind power generation and load perturbations were significantly reduced by the proposed cascade control. In addition, the sensitivity analysis of the system was performed, with the variation in step load perturbation (SLP) of 1% to 5%, system loading and inertia of the system by ±25% of nominal values to prove the efficiency of the controller. Furthermore, to prove the efficiency of PSO-GSA tuned cascade control, the results were compared with other artificial intelligence (AI) methods presented in the literature. Further, the stability of the system was analyzed in frequency domain for different operating cases

    Optimal fuzzy-PID controller with derivative filter for load frequency control including UPFC and SMES

    Get PDF
    A newly adopted optimization technique known as sine-cosine algorithm (SCA) is suggested in this research article to tune the gains of Fuzzy-PID controller along with a derivative filter (Fuzzy-PIDF) of a hybrid interconnected system for the Load Frequency Control (LFC). The scrutinized multi-generation system considers hydro, gas and thermal sources in all areas of the dual area power system integrated with UPFC (unified power flow controller) and SMES (Super-conducting magnetic energy storage) units. The preeminence of the offered Fuzzy-PIDF controller is recognized over Fuzzy-PID controller by comparing their dynamic performance indices concerning minimum undershoot, settling time and also peak overshoot. Finally, the sensitiveness and sturdiness of the recommended control method are proved by altering the parameters of the system from their nominal values and by the implementation of random loading in the system

    Load frequency control for multi-area interconnected power system using artificial intelligent controllers

    Get PDF
    Power system control and stability have been an area with different and continuous challenges in order to reach the desired operation that satisfies consumers and suppliers. To accomplish the purpose of stable operation in power systems, different loops have been equipped to control different parameters. For example, Load Frequency Control (LFC) is introduced to maintain the frequency at or near its nominal values, this loop is also responsible for maintaining the interchanged power between control areas interconnected via tie-lines at scheduled values. Other loops are also employed within power systems such as the Automatic Voltage Regulator (AVR). This thesis focuses on the problem of frequency deviation in power systems and proposes different solutions based on different theories. The proposed methods are implemented in two different power systems namely: unequal two-area interconnected thermal power system and the simplified Great Britain (GB) power system. Artificial intelligence-based controllers have recently dominated the field of control engineering as they are practicable with relatively low solution costs, this is in addition to providing a stable, reliable and robust dynamic performance of the controlled plant. They professionally can handle different technical issues resulting from nonlinearities and uncertainties. In order to achieve the best possible control and dynamic system behaviour, a soft computing technique based on the Bees Algorithm (BA) is suggested for tuning the parameters of the proposed controllers for LFC purposes. Fuzzy PID controller with filtered derivative action (Fuzzy PIDF) optimized by the BA is designed and implemented to improve the frequency performance in the two different systems under study during and after load disturbance. Further, three different fuzzy control configurations that offer higher reliability, namely Fuzzy Cascade PI − PD, Fuzzy PI plus Fuzzy PD, and Fuzzy (PI + PD), optimized by the BA have also been implemented in the two-area interconnected power system. The robustness of these fuzzy configurations has been evidenced against parametric uncertainties of the controlled power systems Sliding Mode Control (SMC) design, modelling and implementation have also been conducted for LFC in the investigated systems where the parameters are tuned by the BA. The mathematical model design of the SMC is derived based on the parameters of the testbed systems. The robustness analysis of the proposed SMC against the controlled systems’ parametric uncertainties has been carried out considering different scenarios. Furthermore, to authenticate the excellence of the proposed controllers, a comparative study is carried out based on the obtained results and those from previously introduced works based on classical PID tuned by the Losi Map-Based Chaotic Optimization Algorithm (LCOA), Fuzzy PID Optimized by Teaching Learning-Based Optimization (TLBO

    Fractional Order Load-Frequency Control of Interconnected Power Systems Using Chaotic Multi-objective Optimization

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Fractional order proportional-integral-derivative (FOPID) controllers are designed for load frequency control (LFC) of two interconnected power systems. Conflicting time domain design objectives are considered in a multi objective optimization (MOO) based design framework to design the gains and the fractional differ-integral orders of the FOPID controllers in the two areas. Here, we explore the effect of augmenting two different chaotic maps along with the uniform random number generator (RNG) in the popular MOO algorithm - the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Different measures of quality for MOO e.g. hypervolume indicator, moment of inertia based diversity metric, total Pareto spread, spacing metric are adopted to select the best set of controller parameters from multiple runs of all the NSGA-II variants (i.e. nominal and chaotic versions). The chaotic versions of the NSGA-II algorithm are compared with the standard NSGA-II in terms of solution quality and computational time. In addition, the Pareto optimal fronts showing the trade-off between the two conflicting time domain design objectives are compared to show the advantage of using the FOPID controller over that with simple PID controller. The nature of fast/slow and high/low noise amplification effects of the FOPID structure or the four quadrant operation in the two inter-connected areas of the power system is also explored. A fuzzy logic based method has been adopted next to select the best compromise solution from the best Pareto fronts corresponding to each MOO comparison criteria. The time domain system responses are shown for the fuzzy best compromise solutions under nominal operating conditions. Comparative analysis on the merits and de-merits of each controller structure is reported then. A robustness analysis is also done for the PID and the FOPID controllers
    corecore