99,753 research outputs found

    Variable Density Turbulence Tunnel Facility

    Full text link
    The Variable Density Turbulence Tunnel (VDTT) at the Max Planck Institute for Dynamics and Self-Organization in G\"ottingen, Germany produces very high turbulence levels at moderate flow velocities, low power consumption and adjustable kinematic viscosity between 10−4m2/s10^{-4} m^2/s and 10−7m2/s10^{-7} m^2/s. The Reynolds number can be varied by changing the pressure or flow rate of the gas or by using different non-flammable gases including air. The highest kinematic viscosities, and hence lowest Reynolds numbers, are reached with air or nitrogen at 0.1 bar. To reach the highest Reynolds numbers the tunnel is pressurized to 15 bar with the dense gas sulfur hexafluoride (SF6_6). Turbulence is generated at the upstream ends of two measurement sections with grids, and the evolution of this turbulence is observed as it moves down the length of the sections. We describe the instrumentation presently in operation, which consists of the tunnel itself, classical grid turbulence generators, and state-of-the-art nano-fabricated hot-wire anemometers provided by Princeton University [Vallikivi et al. (2011) Exp. Fluids 51, 1521]. We report measurements of the characteristic scales of the flow and of turbulent spectra up to Taylor Reynolds number Rλ≈1600R_\lambda \approx 1600, higher than any other grid-turbulence experiment. We also describe instrumentation under development, which includes an active grid and a Lagrangian particle tracking system that moves down the length of the tunnel with the mean flow. In this configuration, the properties of the turbulence are adjustable and its structure is resolvable up to Rλ≈8000R_\lambda \approx 8000.Comment: 45 pages, 31 figure

    The Universal Cloud and Aerosol Sounding System (UCASS): a low-cost miniature optical particle counter for use in dropsonde or balloon-borne sounding systems

    Get PDF
    © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. An earlier version of this work was published in Atmospheric Measurement Techniques Discussions: https://dx.doi.org/10.5194/amt-2019-70.A low-cost miniaturized particle counter has been developed by The University of Hertfordshire (UH) for the measurement of aerosol and droplet concentrations and size distributions. The Universal Cloud and Aerosol Sounding System (UCASS) is an optical particle counter (OPC), which uses wide-angle elastic light scattering for the high-precision sizing of fluid-borne particulates. The UCASS has up to 16 configurable size bins, capable of sizing particles in the range 0.4–40 ”m in diameter. Unlike traditional particle counters, the UCASS is an open-geometry system that relies on an external air flow. Therefore, the instrument is suited for use as part of a dropsonde, balloon-borne sounding system, as part of an unmanned aerial vehicle (UAV), or on any measurement platform with a known air flow. Data can be logged autonomously using an on-board SD card, or the device can be interfaced with commercially available meteorological sondes to transmit data in real time. The device has been deployed on various research platforms to take measurements of both droplets and dry aerosol particles. Comparative results with co-located instrumentation in both laboratory and field settings show good agreement for the sizing and counting ability of the UCASS.Peer reviewe

    Advanced Post-Processing and Correlation Analyses in High-Velocity Air-Water Flows. 2- Microscopic Properties

    Get PDF
    The on-going interest in air-water flows is accompanied sometimes by citations of outdated articles and some ignorance of key contributions. A basic issue is the inadequate, incomplete interpretation of air-water flow instrumentation by hydraulic engineers and researchers. This article focus on the bubbly flow structure of high-velocity air-water flow based upon measurements by means of intrusive phase detection probes. It is shown that some advanced post-processing techniques may yield expanded information on the air-water structures and particle clustering

    Particle Image Velocimetry (PIV) for Positron Emission Particle Tracking (PEPT) and Turbulence Modeling Validation

    Get PDF
    A Particle Image Velocimetry (PIV) experiment is designed and data collected with intention to validate Positron Emission Particle Tracking (PEPT) methods. The PIV data are collected in a narrow rectangular channel for flow Reynolds number near 20,000. The narrow channel and attendant pump, header tanks and flow instrumentation are portable and designed to allow identical tests in a Concord Microsystems MicroPET P4 pre-clinical PET scanner at the pre-clinical Imaging Suite at the UT Hospital. The PIV data are instantaneous velocity field data, allowing statistics on the flow turbulence to be collected in the Eulerian frame. The PEPT method measures activated particle trajectories in time, corresponding to a Lagrangian measurement. The relationship between the PIV data collected herein, and the anticipated PEPT data is explored to provide a path for validating the performance of the PEPT method for flow measurement. The utility of the PEPT method extends to opaque fluids and flow in complex and opaque flow boundaries. These flow conditions are impossible or technically difficult for optical PIV methods to address. The PEPT method also provides full 4 dimensional particle trajectory data, with temporal and spatial resolution competitive with the most advanced optical PIV methods

    The First Step in Solar Hydrogen Production: Development of a Solar Thermal Reactor for the Reduction of Metal Oxide Particles

    Get PDF
    A solar thermal reactor has been designed to experimentally investigate promising paths for reducing metal oxide particles to reduced oxidation states (e.g. Fe2O3 to Fe3O4) utilizing concentrated solar energy. This reactor is windowless and is able to handle internal cavity temperatures in excess of 1700 K. It also has a quasi-continuous feed system that allows the particle residence times to be varied for particles between 0.044 mm and 1 mm in diameter. Furthermore, this reactor utilizes an instrumentation system for the measurement of temperature, particle residence time, particle mass flow rate, and solar flux. In an industrial setting, a large-scale metal oxide reactor would serve as the first step in a metal oxide solar thermal electro-chemical cycle. After the particles are reduced at elevated temperatures using concentrated solar energy, they are used in an electrolysis process to facilitate the production of hydrogen from water. In this process, the reduced metal oxide particles are reoxidized at the anode and hydrogen is liberated at the cathode. The presence of the metal oxide enables hydrogen to be produced with an ideal cell potential of 0.21 V, a potential substantially below the ideal value of 1.2 V for traditional water electrolysis

    Performance of diethylene glycol based particle counters in the sub 3 nm size range [Discussion paper]

    Get PDF
    When studying new particle formation, the uncertainty in determining the "true" nucleation rate is considerably reduced when using Condensation Particle Counters (CPCs) capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm). Recently CPCs, able to reliably detect particles below 2 nm in size and even close to 1 nm became available. The corrections needed to calculate nucleation rates are substantially reduced compared to scaling the observed formation rate to the nucleation rate at the critical cluster size. However, this improved instrumentation requires a careful characterization of their cut-off size and the shape of the detection efficiency curve because relatively small shifts in the cut-off size can translate into larger relative errors when measuring particles close to the cut-off size. Here we describe the development of two continuous flow CPCs using diethylene glycol (DEG) as the working fluid. The design is based on two TSI 3776 counters. Several sets of measurements to characterize their performance at different temperature settings were carried out. Furthermore two mixing-type Particle Size Magnifiers (PSM) A09 from Airmodus were characterized in parallel. One PSM was operated at the highest mixing ratio (1 L min−1 saturator flow), and the other was operated in a scanning mode, where the mixing ratios are changed periodically, resulting in a range of cut-off sizes. Different test aerosols were generated using a nano-Differential Mobility Analyzer (nano-DMA) or a high resolution DMA, to obtain detection efficiency curves for all four CPCs. One calibration setup included a high resolution mass spectrometer (APi-TOF) for the determination of the chemical composition of the generated clusters. The lowest cut-off sizes were achieved with negatively charged ammonium sulphate clusters, resulting in cut-offs of 1.4 nm for the laminar flow CPCs and 1.2 and 1.1 nm for the PSMs. A comparison of one of the laminar-flow CPCs and one of the PSMs measuring ambient and laboratory air showed good agreement between the instruments

    An instrumented tracer for Lagrangian measurements in Rayleigh-B\'enard convection

    Get PDF
    We have developed novel instrumentation for making Lagrangian measurements of temperature in diverse fluid flows. A small neutrally buoyant capsule is equipped with on-board electronics which measure temperature and transmit the data via a wireless radio frequency link to a desktop computer. The device has 80 dB dynamic range, resolving milli-Kelvin changes in temperature with up to 100 ms sampling time. The capabilities of these "smart particles" are demonstrated in turbulent thermal convection in water. We measure temperature variations as the particle is advected by the convective motion, and analyse its statistics. Additional use of cameras allow us to track the particle position and to report here the first direct measurement of Lagrangian heat flux transfer in Rayleigh-B{\'e}nard convection. The device shows promise for opening new research in a broad variety of fluid systems.Comment: 14 page

    Measurement of Flow Characteristics in a Bubbling Fluidized Bed Using Electrostatic Sensor Arrays

    Get PDF
    Fluidized beds are widely applied in a range of industrial processes. In order to maintain the efficient operation of a fluidized bed, the flow parameters in the bed should be monitored continuously. In this paper, electrostatic sensor arrays are used to measure the flow characteristics in a bubbling fluidized bed. In order to investigate the electrostatic charge distribution and the flow dynamics of solid particles in the dense region, time and frequency domain analysis of the electrostatic signals is conducted. In addition, the correlation velocities and weighted average velocity of Geldart A particles in the dense and transit regions are calculated, and the flow dynamics of Geldart A and D particles in the dense and transit regions are compared. Finally, the influence of liquid antistatic agents on the performance of the electrostatic sensor array is investigated. According to the experimental results, it is proved that the flow characteristics in the dense and transit regions of a bubbling fluidized bed can be measured using electrostatic sensor arrays

    Comparison of dense optical flow and PIV techniques for mapping surface current flow in tidal stream energy sites

    Get PDF
    Marine renewable energy site and resource characterisation, in particular tidal stream energy, require detailed flow measurements which often rely on high-cost in situ instrumentation which is limited in spatial extent. We hypothesise uncrewed aerial vehicles (UAV) offer a low-cost and low-risk data collection method for tidal stream environments, as recently techniques have been developed to derive flow from optical videography. This may benefit tidal and floating renewable energy developments, providing additional insight into flow conditions and complement traditional instrumentation. Benefits to existing data collection methods include capturing flow over a large spatial extent synchronously, which could be used to analyse flow around structures or for site characterisation; however, uncertainty and method application to tidal energy sites is unclear. Here, two algorithms are tested: large-scale particle image velocimetry using PIVlab and dense optical flow. The methods are applied on video data collected at two tidal stream energy sites (Pentland Firth, Scotland, and Ramsey Sound, Wales) for a range of flow and environmental conditions. Although average validation measures were similar (~ 20–30% error), we recommend PIVlab processed velocity data at tidal energy sites because we find bias (underprediction) in optical flow for higher velocities (> 1 m/s)
    • 

    corecore