2,405 research outputs found

    Robust and Efficient Inference of Scene and Object Motion in Multi-Camera Systems

    Get PDF
    Multi-camera systems have the ability to overcome some of the fundamental limitations of single camera based systems. Having multiple view points of a scene goes a long way in limiting the influence of field of view, occlusion, blur and poor resolution of an individual camera. This dissertation addresses robust and efficient inference of object motion and scene in multi-camera and multi-sensor systems. The first part of the dissertation discusses the role of constraints introduced by projective imaging towards robust inference of multi-camera/sensor based object motion. We discuss the role of the homography and epipolar constraints for fusing object motion perceived by individual cameras. For planar scenes, the homography constraints provide a natural mechanism for data association. For scenes that are not planar, the epipolar constraint provides a weaker multi-view relationship. We use the epipolar constraint for tracking in multi-camera and multi-sensor networks. In particular, we show that the epipolar constraint reduces the dimensionality of the state space of the problem by introducing a ``shared'' state space for the joint tracking problem. This allows for robust tracking even when one of the sensors fail due to poor SNR or occlusion. The second part of the dissertation deals with challenges in the computational aspects of tracking algorithms that are common to such systems. Much of the inference in the multi-camera and multi-sensor networks deal with complex non-linear models corrupted with non-Gaussian noise. Particle filters provide approximate Bayesian inference in such settings. We analyze the computational drawbacks of traditional particle filtering algorithms, and present a method for implementing the particle filter using the Independent Metropolis Hastings sampler, that is highly amenable to pipelined implementations and parallelization. We analyze the implementations of the proposed algorithm, and in particular concentrate on implementations that have minimum processing times. The last part of the dissertation deals with the efficient sensing paradigm of compressing sensing (CS) applied to signals in imaging, such as natural images and reflectance fields. We propose a hybrid signal model on the assumption that most real-world signals exhibit subspace compressibility as well as sparse representations. We show that several real-world visual signals such as images, reflectance fields, videos etc., are better approximated by this hybrid of two models. We derive optimal hybrid linear projections of the signal and show that theoretical guarantees and algorithms designed for CS can be easily extended to hybrid subspace-compressive sensing. Such methods reduce the amount of information sensed by a camera, and help in reducing the so called data deluge problem in large multi-camera systems

    VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera

    Full text link
    We present the first real-time method to capture the full global 3D skeletal pose of a human in a stable, temporally consistent manner using a single RGB camera. Our method combines a new convolutional neural network (CNN) based pose regressor with kinematic skeleton fitting. Our novel fully-convolutional pose formulation regresses 2D and 3D joint positions jointly in real time and does not require tightly cropped input frames. A real-time kinematic skeleton fitting method uses the CNN output to yield temporally stable 3D global pose reconstructions on the basis of a coherent kinematic skeleton. This makes our approach the first monocular RGB method usable in real-time applications such as 3D character control---thus far, the only monocular methods for such applications employed specialized RGB-D cameras. Our method's accuracy is quantitatively on par with the best offline 3D monocular RGB pose estimation methods. Our results are qualitatively comparable to, and sometimes better than, results from monocular RGB-D approaches, such as the Kinect. However, we show that our approach is more broadly applicable than RGB-D solutions, i.e. it works for outdoor scenes, community videos, and low quality commodity RGB cameras.Comment: Accepted to SIGGRAPH 201

    A Comprehensive Performance Evaluation of Deformable Face Tracking "In-the-Wild"

    Full text link
    Recently, technologies such as face detection, facial landmark localisation and face recognition and verification have matured enough to provide effective and efficient solutions for imagery captured under arbitrary conditions (referred to as "in-the-wild"). This is partially attributed to the fact that comprehensive "in-the-wild" benchmarks have been developed for face detection, landmark localisation and recognition/verification. A very important technology that has not been thoroughly evaluated yet is deformable face tracking "in-the-wild". Until now, the performance has mainly been assessed qualitatively by visually assessing the result of a deformable face tracking technology on short videos. In this paper, we perform the first, to the best of our knowledge, thorough evaluation of state-of-the-art deformable face tracking pipelines using the recently introduced 300VW benchmark. We evaluate many different architectures focusing mainly on the task of on-line deformable face tracking. In particular, we compare the following general strategies: (a) generic face detection plus generic facial landmark localisation, (b) generic model free tracking plus generic facial landmark localisation, as well as (c) hybrid approaches using state-of-the-art face detection, model free tracking and facial landmark localisation technologies. Our evaluation reveals future avenues for further research on the topic.Comment: E. Antonakos and P. Snape contributed equally and have joint second authorshi

    Audio-visual tracking of concurrent speakers

    Get PDF
    Audio-visual tracking of an unknown number of concurrent speakers in 3D is a challenging task, especially when sound and video are collected with a compact sensing platform. In this paper, we propose a tracker that builds on generative and discriminative audio-visual likelihood models formulated in a particle filtering framework. We localize multiple concurrent speakers with a de-emphasized acoustic map assisted by the image detection-derived 3D video observations. The 3D multimodal observations are either assigned to existing tracks for discriminative likelihood computation or used to initialize new tracks. The generative likelihoods rely on color distribution of the target and the de-emphasized acoustic map value. Experiments on AV16.3 and CAV3D datasets show that the proposed tracker outperforms the uni-modal trackers and the state-of-the-art approaches both in 3D and on the image plane
    • …
    corecore