1,400 research outputs found

    Particle filter for context sensitive indoor pedestrian navigation

    Get PDF
    Novel particle filter design combines foot mounted inertial (IMU), bluetooth low energy (BLE) and ultra-wideband (UWB) technologies along with map matching into a seamless integrated navigation system for indoors. The system was evaluated by 10 test walks along an 80m long indoor track including stairs and running. 95% of the time the average error for a particle was below 3.1 m with filter completion success rate of 90%. Furthermore, a system without UWB using only IMU, BLE and map matching achieved an average error for a particle to be below 3.6 m with filter completion success rate of 70%. The selected technologies and sensors are affordable and easily deployable. Inertial measurement unit's characteristics complement the disadvantages in the rf technologies and vice versa. The code for the rover can be implemented on a modern mobile device together with a foot mounted IMU

    A tripartite filter design for seamless pedestrian navigation using recursive 2-means clustering and Tukey update

    Get PDF
    Mobile devices are desired to guide users seamlessly to diverse destinations indoors and outdoors. The positioning fixing subsystems often provide poor quality measurements with gaps in an urban environment. No single position fixing technology works continuously. Many sensor fusion variations have been previously trialed to overcome this challenge, including the particle filter that is robust and the Kalman filter which is fast. However, a lack exists, of context aware, seamless systems that are able to use the most fit sensors and methods in the correct context. A novel adaptive and modular tripartite navigation filter design is presented to enable seamless navigation. It consists of a sensor subsystem, a context inference and a navigation filter blocks. A foot-mounted inertial measurement unit (IMU), a Global Navigation Satellite System (GNSS) receiver, Bluetooth Low Energy (BLE) and Ultrawideband (UWB) positioning systems were used in the evaluation implementation of this design. A novel recursive 2-means clustering method was developed to track multiple hypotheses when there are gaps in position fixes. The closest hypothesis to a new position fix is selected when the gap ends. Moreover, when the position fix quality measure is not reliable, a fusion approach using a Tukey-style particle filter measurement update is introduced. Results show the successful operation of the design implementation. The Tukey update improves accuracy by 5% and together with the clustering method the system robustness is enhanced

    Adaptive real-time dual-mode filter design for seamless pedestrian navigation

    Get PDF
    Seamless navigation requires that the mobile device is capable of offering a position solution both indoors and outdoors. Novel seamless navigation system design was implemented and tested to achieve this aim. The design consists of general navigation system framework blocks and of the necessary interface agreements between the blocks. This approach enables plug-and-play style design of modules. The implementation used four preselected key technologies. Microstrain 3DM-GX4-45 foot-mounted inertial measurement unit sensor data was fused together with the u-blox GNSS receiver positions outdoors. Context sensitive inference engine enabled the fusion of position updates indoors from the Decawave TREK1000 Ultra WideBand ranging kit and from the 6 Kontakt.io/Raspberry Pi anchor-based Bluetooth low energy fingeprinting system. Novel dual-mode filter design uses a particle filter and the pentagon buffer enhanced Kalman filter in the position solution derivation. Depending on the map and the walls in the environment and on the quality of position updates, the implemented control logic employs the most fit filter for the current context. Computational power is now focussed, when particle filter is needed. The novel pentagon buffer enhanced Kalman filter is 10 times faster, allowing power saving when situation is not too critical. Moreover, the buffer provides position updates by interacting with the map and helps to correct the position solution. The navigation system is seamless according to the tests conducted around and within the Nottingham Geospatial building. No user input is needed for smooth transition from outdoors to indoors and vice versa. The system achieves an accuracy of 2.35m outdoors and 1.4 m indoors (95% of error). Inertial system availability was continuous, while GNSS was available outdoors and BLE and UWB indoors

    Cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging

    Full text link
    The implementation challenges of cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging are discussed and work on the subject is reviewed. System architecture and sensor fusion are identified as key challenges. A partially decentralized system architecture based on step-wise inertial navigation and step-wise dead reckoning is presented. This architecture is argued to reduce the computational cost and required communication bandwidth by around two orders of magnitude while only giving negligible information loss in comparison with a naive centralized implementation. This makes a joint global state estimation feasible for up to a platoon-sized group of agents. Furthermore, robust and low-cost sensor fusion for the considered setup, based on state space transformation and marginalization, is presented. The transformation and marginalization are used to give the necessary flexibility for presented sampling based updates for the inter-agent ranging and ranging free fusion of the two feet of an individual agent. Finally, characteristics of the suggested implementation are demonstrated with simulations and a real-time system implementation.Comment: 14 page

    Indoor positioning of shoppers using a network of bluetooth low energy beacons

    Get PDF
    In this paper we present our work on the indoor positioning of users (shoppers), using a network of Bluetooth Low Energy (BLE) beacons deployed in a large wholesale shopping store. Our objective is to accurately determine which product sections a user is adjacent to while traversing the store, using RSSI readings from multiple beacons, measured asynchronously on a standard commercial mobile device. We further wish to leverage the store layout (which imposes natural constraints on the movement of users) and the physical configuration of the beacon network, to produce a robust and efficient solution. We start by describing our application context and hardware configuration, and proceed to introduce our node-graph model of user location. We then describe our experimental work which begins with an investigation of signal characteristics along and across aisles. We propose three methods of localization, using a “nearest-beacon” approach as a base-line; exponentially averaged weighted range estimates; and a particle-filter method based on the RSSI attenuation model and Gaussian-noise. Our results demonstrate that the particle filter method significantly out-performs the others. Scalability also makes this method ideal for applications run on mobile devices with more limited computational capabilitie

    The IPIN 2019 Indoor Localisation Competition—Description and Results

    Get PDF
    IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment, made of two buildings close together for a total usable area of 1000 m 2 outdoors and and 6000 m 2 indoors over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL framework, have aimed at comparing the accuracy performance of personal positioning systems in fair and realistic conditions: past editions of the competition were carried in big conference settings, university campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and reproducible comparison of the most recent positioning and tracking algorithms in the same environment as the on-site Tracks

    The IPIN 2019 Indoor Localisation Competition - Description and Results

    Get PDF
    IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment, made of two buildings close together for a total usable area of 1000 m 2 outdoors and and 6000 m 2 indoors over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL framework, have aimed at comparing the accuracy performance of personal positioning systems in fair and realistic conditions: past editions of the competition were carried in big conference settings, university campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and reproducible comparison of the most recent positioning and tracking algorithms in the same environment as the on-site Tracks

    Sensor Modalities and Fusion for Robust Indoor Localisation

    Get PDF
    • …
    corecore