4,360 research outputs found

    Path-tracing Monte Carlo Library for 3D Radiative Transfer in Highly Resolved Cloudy Atmospheres

    Full text link
    Interactions between clouds and radiation are at the root of many difficulties in numerically predicting future weather and climate and in retrieving the state of the atmosphere from remote sensing observations. The large range of issues related to these interactions, and in particular to three-dimensional interactions, motivated the development of accurate radiative tools able to compute all types of radiative metrics, from monochromatic, local and directional observables, to integrated energetic quantities. In the continuity of this community effort, we propose here an open-source library for general use in Monte Carlo algorithms. This library is devoted to the acceleration of path-tracing in complex data, typically high-resolution large-domain grounds and clouds. The main algorithmic advances embedded in the library are those related to the construction and traversal of hierarchical grids accelerating the tracing of paths through heterogeneous fields in null-collision (maximum cross-section) algorithms. We show that with these hierarchical grids, the computing time is only weakly sensitivive to the refinement of the volumetric data. The library is tested with a rendering algorithm that produces synthetic images of cloud radiances. Two other examples are given as illustrations, that are respectively used to analyse the transmission of solar radiation under a cloud together with its sensitivity to an optical parameter, and to assess a parametrization of 3D radiative effects of clouds.Comment: Submitted to JAMES, revised and submitted again (this is v2

    A Comparison of Simple Mass Estimators for Galaxy Clusters

    Get PDF
    High-resolution N-body simulations are used to investigate systematic trends in the mass profiles and total masses of clusters as derived from 3 simple estimators: (1) the weak gravitational lensing shear field under the assumption of an isothermal cluster potential, (2) the dynamical mass obtained from the measured velocity dispersion under the assumption of an isothermal cluster potential, and (3) the classical virial estimator. The clusters consist of order 2.5e+05 particles of mass m_p \simeq 10^{10} \Msun, have triaxial mass distributions, and significant substructure exists within their virial radii. Not surprisingly, the level of agreement between the mass profiles obtained from the various estimators and the actual mass profiles is found to be scale-dependent. The virial estimator yields a good measurement of the total cluster mass, though it is systematically underestimated by of order 10%. This result suggests that, at least in the limit of ideal data, the virial estimator is quite robust to deviations from pure spherical symmetry and the presence of substructure. The dynamical mass estimate based upon a measurement of the cluster velocity dispersion and an assumption of an isothermal potential yields a poor measurement of the total mass. The weak lensing estimate yields a very good measurement of the total mass, provided the mean shear used to determine the equivalent cluster velocity dispersion is computed from an average of the lensing signal over the entire cluster (i.e. the mean shear is computed interior to the virial radius). [abridged]Comment: Accepted for publication in The Astrophysical Journal. Complete paper, including 3 large colour figures can also be obtained from http://bu-ast.bu.edu/~brainerd/preprints

    Ray Tracing Simulations of Weak Lensing by Large-Scale Structure

    Get PDF
    We investigate weak lensing by large-scale structure using ray tracing through N-body simulations. Photon trajectories are followed through high resolution simulations of structure formation to make simulated maps of shear and convergence on the sky. Tests with varying numerical parameters are used to calibrate the accuracy of computed lensing statistics on angular scales from about 1 arcminute to a few degrees. Various aspects of the weak lensing approximation are also tested. For fields a few degrees on a side the shear power spectrum is almost entirely in the nonlinear regime and agrees well with nonlinear analytical predictions. Sampling fluctuations in power spectrum estimates are investigated by comparing several ray tracing realizations of a given model. For survey areas smaller than a degree on a side the main source of scatter is nonlinear coupling to modes larger than the survey. We develop a method which uses this effect to estimate the mass density parameter Omega from the scatter in power spectrum estimates for subregions of a larger survey. We show that the power spectrum can be measured accurately from realistically noisy data on scales corresponding to 1-10 Mpc/h. Non-Gaussian features in the one point distribution function of the weak lensing convergence (reconstructed from the shear) are also sensitive to Omega. We suggest several techniques for estimating Omega in the presence of noise and compare their statistical power, robustness and simplicity. With realistic noise Omega can be determined to within 0.1-0.2 from a deep survey of several square degrees.Comment: 59 pages, 22 figures included. Matches version accepted for Ap

    A boundary integral formalism for stochastic ray tracing in billiards

    Get PDF
    Determining the flow of rays or non-interacting particles driven by a force or velocity field is fundamental to modelling many physical processes. These include particle flows arising in fluid mechanics and ray flows arising in the geometrical optics limit of linear wave equations. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain

    An experimental and theoretical investigation of particle–wall impacts in a T-junction

    Get PDF
    Understanding the behaviour of particles entrained in a fluid flow upon changes in flow direction is crucial in problems where particle inertia is important, such as the erosion process in pipe bends.We present results on the impact of particles in a T-shaped channel in the laminar-turbulent transitional regime. The impacting event for a given system is described in terms of the Reynolds number and the particle Stokes number. Experimental results for the impact are compared with the trajectories predicted by theoretical particle tracing models for a range of configurations to determine the role of the viscous boundary layer in retarding the particles and reducing the rate of collision with the substrate. In particular a 2D model based on a stagnation point flow is used together with 3D numerical simulations. We show how the simple 2D model provides a tractable way of understanding the general collision behaviour, while more advanced 3D simulation can be helpful in understanding the details of the flow
    • 

    corecore