31 research outputs found

    Ant Colony Optimization

    Get PDF
    Ant Colony Optimization (ACO) is the best example of how studies aimed at understanding and modeling the behavior of ants and other social insects can provide inspiration for the development of computational algorithms for the solution of difficult mathematical problems. Introduced by Marco Dorigo in his PhD thesis (1992) and initially applied to the travelling salesman problem, the ACO field has experienced a tremendous growth, standing today as an important nature-inspired stochastic metaheuristic for hard optimization problems. This book presents state-of-the-art ACO methods and is divided into two parts: (I) Techniques, which includes parallel implementations, and (II) Applications, where recent contributions of ACO to diverse fields, such as traffic congestion and control, structural optimization, manufacturing, and genomics are presented

    Task scheduling for application integration: A strategy for large volumes of data

    Get PDF
    Enterprise Application Integration is the research field, which provides methodologies, techniques and tools for modelling and implementing integration processes. An integration process performs the orchestration of a set of applications to keep them synchronised or to allow the creation of new features. It can be represented by a workflow composed of tasks and communication channels. Integration platforms are tools for the design and execution of integration processes in which, the runtime system is the component responsible for execution time of the tasks and the allocation of computational resources that perform them. The processing of a large volume of data, corresponding to execution of millions of tasks, can cause situations of overload, characterised by the accumulation of tasks in internal queues awaiting computational resources in the runtime systems, resulting in unacceptable response time for the external applications and users. Our research hypothesis is that the runtime systems of the integration platforms use simplistic heuristics for scheduling tasks, which does not allow them to maintain acceptable levels of performance when there are overload situations. In this research work, we developed (i) a representation for integration processes, (ii) a characterisation for your task schedules, (iii) a heuristic to deal with situations of overload, (iv) a mathematical model for a performance metric of the execution of integration processes and (v) a simulation tool for task scheduling heuristics. Our research results indicate that, in situations of overload, our heuristic promotes a balanced workload distribution and an increase in the performance of the execution of the integration processes.Integração de Aplicações Empresariais é o campo de pesquisa, que fornece metodologias, técnicas e ferramentas para modelar e implementar processos de integração. Um processo de integração executa a orquestração de um conjunto de aplicações para mantê-las sincronizadas ou para permitir a criação de novas funcionalidades. Ele pode ser representado por um fluxo de trabalho composto por tarefas e canais de comunicação. Plataformas de integração são ferramentas para projetar e executar processos de integração, nas quais o motor de execução é o componente responsável pelo tempo de execução das tarefas e pela alocação de recursos computacionais que as executam. O processamento de um grande volume de dados, correspondendo a execução de milhões de tarefas, pode causar situações de sobrecarga, caracterizadas pelo acúmulo de tarefas em filas internas que aguardam recursos computacionais nos motores de execução, resultando em tempos de resposta inaceitáveis para aplicações e usuários externos. Nossa hipótese de pesquisa é que os motores de execução das plataformas de integração usam heurísticas simplistas para agendar tarefas, o que não lhes permitem manter níveis aceitáveis de desempenho em situações de sobrecarga. Neste trabalho de pesquisa, desenvolvemos (i) uma representação para processos de integração, (ii) uma caracterização para seus agendamentos de tarefas, (iii) uma heurística para lidar com situações de sobrecarga, (iv) um modelo matemático para uma métrica de desempenho da execução de processos de integração e (v) uma ferramenta de simulação para heurísticas de agendamento de tarefas. Nossos resultados de pesquisa indicam que, em situações de sobrecarga, nossa heurística promove uma distribuição equilibrada da carga de trabalho e um aumento no desempenho da execução dos processos de integração

    Distributed and Lightweight Meta-heuristic Optimization method for Complex Problems

    Get PDF
    The world is becoming more prominent and more complex every day. The resources are limited and efficiently use them is one of the most requirement. Finding an Efficient and optimal solution in complex problems needs to practical methods. During the last decades, several optimization approaches have been presented that they can apply to different optimization problems, and they can achieve different performance on various problems. Different parameters can have a significant effect on the results, such as the type of search spaces. Between the main categories of optimization methods (deterministic and stochastic methods), stochastic optimization methods work more efficient on big complex problems than deterministic methods. But in highly complex problems, stochastic optimization methods also have some issues, such as execution time, convergence to local optimum, incompatible with distributed systems, and dependence on the type of search spaces. Therefore this thesis presents a distributed and lightweight metaheuristic optimization method (MICGA) for complex problems focusing on four main tracks. 1) The primary goal is to improve the execution time by MICGA. 2) The proposed method increases the stability and reliability of the results by using the multi-population strategy in the second track. 3) MICGA is compatible with distributed systems. 4) Finally, MICGA is applied to the different type of optimization problems with other kinds of search spaces (continuous, discrete and order based optimization problems). MICGA has been compared with other efficient optimization approaches. The results show the proposed work has been achieved enough improvement on the main issues of the stochastic methods that are mentioned before.Maailmasta on päivä päivältä tulossa yhä monimutkaisempi. Resurssit ovat rajalliset, ja siksi niiden tehokas käyttö on erittäin tärkeää. Tehokkaan ja optimaalisen ratkaisun löytäminen monimutkaisiin ongelmiin vaatii tehokkaita käytännön menetelmiä. Viime vuosikymmenien aikana on ehdotettu useita optimointimenetelmiä, joilla jokaisella on vahvuutensa ja heikkoutensa suorituskyvyn ja tarkkuuden suhteen erityyppisten ongelmien ratkaisemisessa. Parametreilla, kuten hakuavaruuden tyypillä, voi olla merkittävä vaikutus tuloksiin. Optimointimenetelmien pääryhmistä (deterministiset ja stokastiset menetelmät) stokastinen optimointi toimii suurissa monimutkaisissa ongelmissa tehokkaammin kuin deterministinen optimointi. Erittäin monimutkaisissa ongelmissa stokastisilla optimointimenetelmillä on kuitenkin myös joitain ongelmia, kuten korkeat suoritusajat, päätyminen paikallisiin optimipisteisiin, yhteensopimattomuus hajautetun toteutuksen kanssa ja riippuvuus hakuavaruuden tyypistä. Tämä opinnäytetyö esittelee hajautetun ja kevyen metaheuristisen optimointimenetelmän (MICGA) monimutkaisille ongelmille keskittyen neljään päätavoitteeseen: 1) Ensisijaisena tavoitteena on pienentää suoritusaikaa MICGA:n avulla. 2) Lisäksi ehdotettu menetelmä lisää tulosten vakautta ja luotettavuutta käyttämällä monipopulaatiostrategiaa. 3) MICGA tukee hajautettua toteutusta. 4) Lopuksi MICGA-menetelmää sovelletaan erilaisiin optimointiongelmiin, jotka edustavat erityyppisiä hakuavaruuksia (jatkuvat, diskreetit ja järjestykseen perustuvat optimointiongelmat). Työssä MICGA-menetelmää verrataan muihin tehokkaisiin optimointimenetelmiin. Tulokset osoittavat, että ehdotetulla menetelmällä saavutetaan selkeitä parannuksia yllä mainittuihin stokastisten menetelmien pääongelmiin liittyen

    Power Modeling and Resource Optimization in Virtualized Environments

    Get PDF
    The provisioning of on-demand cloud services has revolutionized the IT industry. This emerging paradigm has drastically increased the growth of data centers (DCs) worldwide. Consequently, this rising number of DCs is contributing to a large amount of world total power consumption. This has directed the attention of researchers and service providers to investigate a power-aware solution for the deployment and management of these systems and networks. However, these solutions could be bene\ufb01cial only if derived from a precisely estimated power consumption at run-time. Accuracy in power estimation is a challenge in virtualized environments due to the lack of certainty of actual resources consumed by virtualized entities and of their impact on applications\u2019 performance. The heterogeneous cloud, composed of multi-tenancy architecture, has also raised several management challenges for both service providers and their clients. Task scheduling and resource allocation in such a system are considered as an NP-hard problem. The inappropriate allocation of resources causes the under-utilization of servers, hence reducing throughput and energy e\ufb03ciency. In this context, the cloud framework needs an e\ufb00ective management solution to maximize the use of available resources and capacity, and also to reduce the impact of their carbon footprint on the environment with reduced power consumption. This thesis addresses the issues of power measurement and resource utilization in virtualized environments as two primary objectives. At \ufb01rst, a survey on prior work of server power modeling and methods in virtualization architectures is carried out. This helps investigate the key challenges that elude the precision of power estimation when dealing with virtualized entities. A di\ufb00erent systematic approach is then presented to improve the prediction accuracy in these networks, considering the resource abstraction at di\ufb00erent architectural levels. Resource usage monitoring at the host and guest helps in identifying the di\ufb00erence in performance between the two. Using virtual Performance Monitoring Counters (vPMCs) at a guest level provides detailed information that helps in improving the prediction accuracy and can be further used for resource optimization, consolidation and load balancing. Later, the research also targets the critical issue of optimal resource utilization in cloud computing. This study seeks a generic, robust but simple approach to deal with resource allocation in cloud computing and networking. The inappropriate scheduling in the cloud causes under- and over- utilization of resources which in turn increases the power consumption and also degrades the system performance. This work \ufb01rst addresses some of the major challenges related to task scheduling in heterogeneous systems. After a critical analysis of existing approaches, this thesis presents a rather simple scheduling scheme based on the combination of heuristic solutions. Improved resource utilization with reduced processing time can be achieved using the proposed energy-e\ufb03cient scheduling algorithm

    Efficient Learning Machines

    Get PDF
    Computer scienc

    JTIT

    Get PDF
    kwartalni

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    corecore