177 research outputs found

    Particle Swarm Optimization with Quantum Infusion for the Design of Digital Filters

    Get PDF
    In this paper, particle swarm optimization with quantum infusion (PSO-QI) has been applied for the design of digital filters. In PSO-QI, Global best (gbest) particle (in PSO star topology) obtained from particle swarm optimization is enhanced by doing a tournament with an offspring produced by quantum behaved PSO, and selecting the winner as the new gbest. Filters are designed based on the best approximation to the ideal response by minimizing the maximum ripples in passband and stopband of the filter response. PSO-QI, as is shown in the paper, converges to a better fitness. This new algorithm is implemented in the design of finite impulse response (FIR) and infinite impulse response (IIR) filter

    Applications of swarm, evolutionary and quantum algorithms in system identification and digital filter design

    Get PDF
    The thesis focuses on the application of computational intelligence (CI) techniques for two problems - system identification and digital filter design. In system identification, different case studies have been carried out with equal or reduced number of orders as the original system and also in identifying a blackbox model. Lowpass, Highpass, Bandpass and Bandstop FIR and Lowpass IIR filters have been designed using three algorithms using two different fitness functions. Particle Swarm Optimization (PSO), Differential Evolution based PSO (DEPSO) and PSO with Quantum Infusion (PSO-QI) algorithms have been applied in this work --Abstract, page iii

    Differential Evolution Biogeography Based Optimization for Linear Phase Fir Low Pass Filter Design

    Get PDF
    This paper presents an efficient way of designing Linear Phase Finite Impulse Response (FIR) Filter using hybrid Differential Evolution (DE) and Biogeography based optimization (BBO) algorithms. DE is a fast and robust evolutionary algorithm tool for global optimization. On the other hand, BBO uses migration operator to share information among solutions. FIR filter of order 20 is designed using fitness function that is based on minimization of maximum ripples in pass band and stop band of the filter response. The result obtained from Differential Evolution Biogeography Based Optimization (DEBBO) for the FIR low pass filter is good in convergence speed and solution quality in terms of pass band ripple, stop band ripple, transition width. Keywords: DE, BBO, DEBBO, Convergence, FIR Filter

    A PSO with Quantum Infusion Algorithm for Training Simultaneous Recurrent Neural Networks

    Get PDF
    Simultaneous recurrent neural network (SRN) is one of the most powerful neural network architectures well suited for estimation and control of complex time varying nonlinear dynamic systems. SRN training is a difficult problem especially if multiple inputs and multiple outputs (MIMO) are involved. Particle swarm optimization with quantum infusion (PSO-QI) is introduced in this paper for training such SRNs. In order to illustrate the capability of the PSO-QI training algorithm, a wide area monitor (WAM) for a power system is developed using a multiple inputs multiple outputs Elman SRN. The SRN estimates speed deviations of four generators in a multimachine power system. Since MIMO structured SRNs are hard to train, a two step approach for training is presented with PSO-QI. The performance of PSO-QI is compared to that of the standard PSO algorithm. Results demonstrate that the SRN trained with the PSO-QI in the two step approach tracks the speed deviations of the generators with the minimum error

    Learning Functions Generated by Randomly Initialized MLPs and SRNs

    Get PDF
    In this paper, nonlinear functions generated by randomly initialized multilayer perceptrons (MLPs) and simultaneous recurrent neural networks (SRNs) and two benchmark functions are learned by MLPs and SRNs. Training SRNs is a challenging task and a new learning algorithm - PSO-QI is introduced. PSO-QI is a standard particle swarm optimization (PSO) algorithm with the addition of a quantum step utilizing the probability density property of a quantum particle. The results from PSO-QI are compared with the standard backpropagation (BP) and PSO algorithms. It is further verified that functions generated by SRNs are harder to learn than those generated by MLPs but PSO-QI provides learning capabilities of these functions by MLPs and SRNs compared to BP and PSO

    Particle swarming of sensor correction filters

    Get PDF
    Reducing the impact of seismic activity on the motion of suspended optics is essential for the operation of ground-based gravitational wave detectors. During periods of increased seismic activity, low-frequency ground translation and tilt cause the Advanced LIGO observatories to lose 'lock', reducing their duty cycles. This paper applies modern global-optimisation algorithms to aid in the design of the 'sensor correction' filter, used in the control of the active platforms. It is shown that a particle swarm algorithm that minimises a cost-function approximating the differential root mean squared velocity between platforms can produce control filters that perform better across most frequencies in the control bandwidth than those currently installed. These tests were conducted using training data from the LIGO Hanford Observatory seismic instruments and simulations of the Horizontal Access Module Internal Seismic Isolation platforms. These results show that new methods of producing control filters are ready for use at LIGO. The filters were implemented at LIGO's Hanford Observatory, and use the resulting data to refine the cost function. © 2020 IOP Publishing Ltd Printed in the U

    Efficient and Accurate Optimal Linear Phase FIR Filter Design Using Opposition-Based Harmony Search Algorithm

    Get PDF
    In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide
    • …
    corecore