5 research outputs found

    Development of Efficient Intensity Based Registration Techniques for Multi-modal Brain Images

    Get PDF
    Recent advances in medical imaging have resulted in the development of many imaging techniques that capture various aspects of the patients anatomy and metabolism. These are accomplished with image registration: the task of transforming images on a common anatomical coordinate space. Image registration is one of the important task for multi-modal brain images, which has paramount importance in clinical diagnosis, leads to treatment of brain diseases. In many other applications, image registration characterizes anatomical variability, to detect changes in disease state over time, and by mapping functional information into anatomical space. This thesis is focused to explore intensity-based registration techniques to accomplish precise information with accurate transformation for multi-modal brain images. In this view, we addressed mainly three important issues of image registration both in the rigid and non-rigid framework, i.e. i) information theoretic based similarity measure for alignment measurement, ii) free form deformation (FFD) based transformation, and iii) evolutionary technique based optimization of the cost function. Mutual information (MI) is a widely used information theoretic similarity measure criterion for multi-modal brain image registration. MI only dense the quantitative aspects of information based on the probability of events. For rustication of the information of events, qualitative aspect i.e. utility or saliency is a necessitate factor for consideration. In this work, a novel similarity measure is proposed, which incorporates the utility information into mutual Information, known as Enhanced Mutual Information(EMI).It is found that the maximum information gain using EMI is higher as compared to that of other state of arts. The utility or saliency employed in EMI is a scale invariant parameter, and hence it may fail to register in case of projective and perspective transformations. To overcome this bottleneck, salient region (SR) based Enhance Mutual Information (SR-EMI)is proposed, a new similarity measure for robust and accurate registration. The proposed SR-EMI based registration technique is robust to register the multi-modal brain images at a faster rate with better alignment

    Improvements in the registration of multimodal medical imaging : application to intensity inhomogeneity and partial volume corrections

    Get PDF
    Alignment or registration of medical images has a relevant role on clinical diagnostic and treatment decisions as well as in research settings. With the advent of new technologies for multimodal imaging, robust registration of functional and anatomical information is still a challenge, particular in small-animal imaging given the lesser structural content of certain anatomical parts, such as the brain, than in humans. Besides, patient-dependent and acquisition artefacts affecting the images information content further complicate registration, as is the case of intensity inhomogeneities (IIH) showing in MRI and the partial volume effect (PVE) attached to PET imaging. Reference methods exist for accurate image registration but their performance is severely deteriorated in situations involving little images Overlap. While several approaches to IIH and PVE correction exist these methods still do not guarantee or rely on robust registration. This Thesis focuses on overcoming current limitations af registration to enable novel IIH and PVE correction methods.El registre d'imatges mèdiques té un paper rellevant en les decisions de diagnòstic i tractament clíniques així com en la recerca. Amb el desenvolupament de noves tecnologies d'imatge multimodal, el registre robust d'informació funcional i anatòmica és encara avui un repte, en particular, en imatge de petit animal amb un menor contingut estructural que en humans de certes parts anatòmiques com el cervell. A més, els artefactes induïts pel propi pacient i per la tècnica d'adquisició que afecten el contingut d'informació de les imatges complica encara més el procés de registre. És el cas de les inhomogeneïtats d'intensitat (IIH) que apareixen a les RM i de l'efecte de volum parcial (PVE) característic en PET. Tot i que existeixen mètodes de referència pel registre acurat d'imatges la seva eficàcia es veu greument minvada en casos de poc solapament entre les imatges. De la mateixa manera, també existeixen mètodes per la correcció d'IIH i de PVE però que no garanteixen o que requereixen un registre robust. Aquesta tesi es centra en superar aquestes limitacions sobre el registre per habilitar nous mètodes per la correcció d'IIH i de PVE

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Damage and material identification using inverse analysis

    Get PDF
    In this thesis, we formulate novel solutions to two inverse problems using optical measurements as input data: i) local level damage identification of beams, and ii) material constitutive parameter identification using digital image correlation measurement of surface strain/displacements. A novel photogrammetric procedure based on edge-detection was devised to measure the quasi-continuous deflection of beams under given loading. This method is based on the close-range photogrammetry technique made possible through recent developments of image processing algorithms and modern digital cameras. Two computational procedures to reconstruct the stiffness distribution and to detect damage in Euler-Bernoulli beams are developed in this thesis. The first formulation is based on the principle of the equilibrium gap along with a finite element discretization. The solution is obtained by minimizing a regularized functional using a Tikhonov Total Variation (TTV) scheme. The second proposed formulation is a minimization of a data discrepancy functional between measured and model-based deflections. The optimal solution is obtained using a gradient-based minimization algorithm and the adjoint method to calculate the Jacobian. The proposed identification methodology is validated using experimental data. The proposed methodology has the potential to be used for long term health monitoring and damage assessment of civil engineering structures. The identification of material plasticity parameters is carried out by minimizing a least-square functional measuring the gap between inhomogeneous displacement fields obtained from measurements and finite element simulations. The material parameters are identified simultaneously by means of direct, derivative-free optimization methods where the finite element simulation is treated as a black-box procedure. Methods verifying and validating the identified results are given. Particular interest is given to the identifiability issue in deterministic and statistical sense. The validation procedure intends to detect false positive results (type-II errors). The performance of the computational procedures is illustrated by numerical and experimental examples. The proposed approach avoids using the gradient of the cost function in the identification process; it has the benefit of allowing the use of any finite element code as a black box to solve the direct problem
    corecore