2,029 research outputs found

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    The Deployment in the Wireless Sensor Networks: Methodologies, Recent Works and Applications

    Get PDF
    International audienceThe wireless sensor networks (WSN) is a research area in continuous evolution with a variety of application contexts. Wireless sensor networks pose many optimization problems, particularly because sensors have limited capacity in terms of energy, processing and memory. The deployment of sensor nodes is a critical phase that significantly affects the functioning and performance of the network. Often, the sensors constituting the network cannot be accurately positioned, and are scattered erratically. To compensate the randomness character of their placement, a large number of sensors is typically deployed, which also helps to increase the fault tolerance of the network. In this paper, we are interested in studying the positioning and placement of sensor nodes in a WSN. First, we introduce the problem of deployment and then we present the latest research works about the different proposed methods to solve this problem. Finally, we mention some similar issues related to the deployment and some of its interesting applications

    3D Multi-Objective Deployment of an Industrial Wireless Sensor Network for Maritime Applications Utilizing a Distributed Parallel Algorithm

    Get PDF
    Effective monitoring marine environment has become a vital problem in the marine applications. Traditionally, marine application mostly utilizes oceanographic research vessel methods to monitor the environment and human parameters. But these methods are usually expensive and time-consuming, also limited resolution in time and space. Due to easy deployment and cost-effective, WSNs have recently been considered as a promising alternative for next generation IMGs. This paper focuses on solving the issue of 3D WSN deployment in a 3D engine room space of a very large crude-oil carrier (VLCC), in which many power devices are also considered. To address this 3D WSN deployment problem for maritime applications, a 3D uncertain coverage model is proposed with a new 3D sensing model and an uncertain fusion operator, is presented. The deployment problem is converted into a multi-objective problems (MOP) in which three objectives are simultaneously considered: Coverage, Lifetime and Reliability. Our aim is to achieve extensive Coverage, long Lifetime and high Reliability. We also propose a distributed parallel cooperative co-evolutionary multi-objective large-scale evolutionary algorithm (DPCCMOLSEA) for maritime applications. In the simulation experiments, the effectiveness of this algorithm is verified in comparing with five state-of-the-art algorithms. The numerical outputs demonstrate that the proposed method performs the best with respect to both optimization performance and computation time

    Differential Evolution-based 3D Directional Wireless Sensor Network Deployment Optimization

    Get PDF
    Wireless sensor networks (WSNs) are applied more and more widely in real life. In actual scenarios, 3D directional wireless sensors (DWSs) are constantly employed, thus, research on the real-time deployment optimization problem of 3D directional wireless sensor networks (DWSNs) based on terrain big data has more practical significance. Based on this, we study the deployment optimization problem of DWSNs in the 3D terrain through comprehensive consideration of coverage, lifetime, connectivity of sensor nodes, connectivity of cluster headers and reliability of DWSNs. We propose a modified differential evolution (DE) algorithm by adopting CR-sort and polynomial-based mutation on the basis of the cooperative coevolutionary (CC) framework, and apply it to address deployment problem of 3D DWSNs. In addition, to reduce computation time, we realize implementation of message passing interface (MPI) parallelism. As is revealed by the experimentation results, the modified algorithm proposed in this paper achieves satisfying performance with respect to either optimization results or operation time

    Cobertura Fornecendo em Redes de Sensores Direcionais através de Algoritmos de Aprendizagem (AutÎmatos de Aprendizagem)

    Get PDF
    Today, wireless sensor networks due to application development are widely used. There are significant issues in these networks; they can be more effective if they would be fixed. One of these problems is the low coverage of these networks due to their low power. If coverage increases only by increasing the power of sending and receiving power, it can increase network consumption as a catastrophic disaster, while the lack of energy is one of the most important constraints on these networks. To do this, the antenna coverage is oriented in some sensor networks to cover the most important places. This method tries to improves the efficiency and coverage of directional sensor networks by providing a mechanism based on the learning algorithm of the machine called learning automata. Results show this method outperform the before methods at least 20%.Hoy en dĂ­a, las redes de sensores inalĂĄmbricos debido al desarrollo de aplicaciones son ampliamente utilizadas. Hay problemas importantes en estas redes; pueden ser mĂĄs efectivos si se solucionan. Uno de estos problemas es la baja cobertura de estas redes debido a su baja potencia. Si la cobertura aumenta solo elevando la potencia de envĂ­o y recepciĂłn de energĂ­a, puede aumentar el consumo de red como un desastre catastrĂłfico, mientras que la falta de energĂ­a es una de las limitaciones mĂĄs importantes de estas redes. Para hacer esto, la cobertura de la antena estĂĄ orientada en algunas redes de sensores para cubrir los lugares mĂĄs importantes. Este mĂ©todo intenta mejorar la eficiencia y la cobertura de las redes de sensores direccionales al proporcionar un mecanismo basado en el algoritmo de aprendizaje de la mĂĄquina denominado autĂłmatas de aprendizaje. Los resultados muestran que este mĂ©todo supera los mĂ©todos anteriores al menos un 20%.Hoy en dĂ­a, as redes de sensores inalĂĄmbricos debitaram o desenvolvimento de aplicaçÔes sonoras extensamente utilizadas. Obras do feno importantes nas redes; pueden ser mĂĄs effectivos e se solucionan. Uns de esos protes es la baja cobertura de es redes debido a su baja potencia. Se a porta leva sozinho a aumentar a potĂȘncia de envio e a recepção de energia, aumentar o consumo de energia como um desastre catastrĂłfico, a falta de energia de energia Ă© uma das limitaçÔes mais importantes destas redes. Para hacer esto, a cobertura da antena estĂĄ orientada nas algunas redes de sensores para cubrir os lugares mais importantes. This method intenta mejor a eficiencia and the coverage of the networks of sensors directionals are provided in engine based on the algorithm of aprendizado of the machine denominado autĂłmatas de aprendizaje. Los resultados muestran que este mĂ©todo supera os mĂ©todos anteriores a menos de 20%

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Optimal coverage multi-path scheduling scheme with multiple mobile sinks for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are usually formed with many tiny sensors which are randomly deployed within sensing field for target monitoring. These sensors can transmit their monitored data to the sink in a multi-hop communication manner. However, the ‘hot spots’ problem will be caused since nodes near sink will consume more energy during forwarding. Recently, mobile sink based technology provides an alternative solution for the long-distance communication and sensor nodes only need to use single hop communication to the mobile sink during data transmission. Even though it is difficult to consider many network metrics such as sensor position, residual energy and coverage rate etc., it is still very important to schedule a reasonable moving trajectory for the mobile sink. In this paper, a novel trajectory scheduling method based on coverage rate for multiple mobile sinks (TSCR-M) is presented especially for large-scale WSNs. An improved particle swarm optimization (PSO) combined with mutation operator is introduced to search the parking positions with optimal coverage rate. Then the genetic algorithm (GA) is adopted to schedule the moving trajectory for multiple mobile sinks. Extensive simulations are performed to validate the performance of our proposed method

    Improving energy consumption of commercial building with IoT and machine learning

    Get PDF
    • 

    corecore