3,241 research outputs found

    Detection, Recognition and Tracking of Moving Objects from Real-time Video via SP Theory of Intelligence and Species Inspired PSO

    Full text link
    In this paper, we address the basic problem of recognizing moving objects in video images using SP Theory of Intelligence. The concept of SP Theory of Intelligence which is a framework of artificial intelligence, was first introduced by Gerard J Wolff, where S stands for Simplicity and P stands for Power. Using the concept of multiple alignment, we detect and recognize object of our interest in video frames with multilevel hierarchical parts and subparts, based on polythetic categories. We track the recognized objects using the species based Particle Swarm Optimization (PSO). First, we extract the multiple alignment of our object of interest from training images. In order to recognize accurately and handle occlusion, we use the polythetic concepts on raw data line to omit the redundant noise via searching for best alignment representing the features from the extracted alignments. We recognize the domain of interest from the video scenes in form of wide variety of multiple alignments to handle scene variability. Unsupervised learning is done in the SP model following the DONSVIC principle and natural structures are discovered via information compression and pattern analysis. After successful recognition of objects, we use species based PSO algorithm as the alignments of our object of interest is analogues to observation likelihood and fitness ability of species. Subsequently, we analyze the competition and repulsion among species with annealed Gaussian based PSO. We have tested our algorithms on David, Walking2, FaceOcc1, Jogging and Dudek, obtaining very satisfactory and competitive results

    Semi-supervised Classification: Cluster and Label Approach using Particle Swarm Optimization

    Full text link
    Classification predicts classes of objects using the knowledge learned during the training phase. This process requires learning from labeled samples. However, the labeled samples usually limited. Annotation process is annoying, tedious, expensive, and requires human experts. Meanwhile, unlabeled data is available and almost free. Semi-supervised learning approaches make use of both labeled and unlabeled data. This paper introduces cluster and label approach using PSO for semi-supervised classification. PSO is competitive to traditional clustering algorithms. A new local best PSO is presented to cluster the unlabeled data. The available labeled data guides the learning process. The experiments are conducted using four state-of-the-art datasets from different domains. The results compared with Label Propagation a popular semi-supervised classifier and two state-of-the-art supervised classification models, namely k-nearest neighbors and decision trees. The experiments show the efficiency of the proposed model

    A Tunable Particle Swarm Size Optimization Algorithm for Feature Selection

    Full text link
    Feature selection is the process of identifying statistically most relevant features to improve the predictive capabilities of the classifiers. To find the best features subsets, the population based approaches like Particle Swarm Optimization(PSO) and genetic algorithms are being widely employed. However, it is a general observation that not having right set of particles in the swarm may result in sub-optimal solutions, affecting the accuracies of classifiers. To address this issue, we propose a novel tunable swarm size approach to reconfigure the particles in a standard PSO, based on the data sets, in real time. The proposed algorithm is named as Tunable Particle Swarm Size Optimization Algorithm (TPSO). It is a wrapper based approach wherein an Alternating Decision Tree (ADT) classifier is used for identifying influential feature subset, which is further evaluated by a new objective function which integrates the Classification Accuracy (CA) with a modified F-Score, to ensure better classification accuracy over varying population sizes. Experimental studies on bench mark data sets and Wilcoxon statistical test have proved the fact that the proposed algorithm (TPSO) is efficient in identifying optimal feature subsets that improve classification accuracies of base classifiers in comparison to its standalone form.Comment: 7 pages, 1 figure, This paper is accepted for oral presentation at IEEE Congress on Evolutionary Computation (CEC) - WCCI 2018, Rio de Janerio, Brazil, #1812

    A Formal Methods Approach to Pattern Synthesis in Reaction Diffusion Systems

    Full text link
    We propose a technique to detect and generate patterns in a network of locally interacting dynamical systems. Central to our approach is a novel spatial superposition logic, whose semantics is defined over the quad-tree of a partitioned image. We show that formulas in this logic can be efficiently learned from positive and negative examples of several types of patterns. We also demonstrate that pattern detection, which is implemented as a model checking algorithm, performs very well for test data sets different from the learning sets. We define a quantitative semantics for the logic and integrate the model checking algorithm with particle swarm optimization in a computational framework for synthesis of parameters leading to desired patterns in reaction-diffusion systems

    Automated Simulations of Galaxy Morphology Evolution using Deep Learning and Particle Swarm Optimisation

    Full text link
    The formation of Hoag-type galaxies with central spheroidal galaxies and outer stellar rings has yet to be understood in astronomy. We consider that these unique objects were formed from the past interaction between elliptical galaxies and gas-rich dwarf galaxies. We have modelled this potential formation process through simulation. These numerical simulations are a means of investigating this formation hypothesis, however the parameter space to be explored for these simulations is vast. Through the application of machine learning and computational science, we implement a new two-fold method to find the best model parameters for stellar rings in the simulations. First, test particle simulations are run to find a possible range of parameters for which stellar rings can be formed around elliptical galaxies (i.e. Hoag-type galaxies). A novel combination of particle swarm optimisation and Siamese neural networks has been implemented to perform the search over the parameter space and test the level of consistency between observations and simulations for numerous models. Upon the success of this initial step, we subsequently run full chemodynamical simulations for the derived range of model parameters in order to verify the output of the test particle simulations. We successfully find parameter sets at which stellar rings can be formed from the interaction between a gas-rich dwarf galaxy and a central elliptical galaxy. This is evidence that supports our hypothesis about the formation process of Hoag-type galaxies. In addition, this suggests that our new two-fold method has been successfully implemented in this problem search-space and can be investigated further in future applications. ~Comment: 32 pages: Master thesis at UWA (Computer science

    Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives

    Full text link
    Particle Swarm Optimization (PSO) is a metaheuristic global optimization paradigm that has gained prominence in the last two decades due to its ease of application in unsupervised, complex multidimensional problems which cannot be solved using traditional deterministic algorithms. The canonical particle swarm optimizer is based on the flocking behavior and social co-operation of birds and fish schools and draws heavily from the evolutionary behavior of these organisms. This paper serves to provide a thorough survey of the PSO algorithm with special emphasis on the development, deployment and improvements of its most basic as well as some of the state-of-the-art implementations. Concepts and directions on choosing the inertia weight, constriction factor, cognition and social weights and perspectives on convergence, parallelization, elitism, niching and discrete optimization as well as neighborhood topologies are outlined. Hybridization attempts with other evolutionary and swarm paradigms in selected applications are covered and an up-to-date review is put forward for the interested reader.Comment: 34 pages, 7 table

    A Proposed Artificial intelligence Model for Real-Time Human Action Localization and Tracking

    Full text link
    In recent years, artificial intelligence (AI) based on deep learning (DL) has sparked tremendous global interest. DL is widely used today and has expanded into various interesting areas. It is becoming more popular in cross-subject research, such as studies of smart city systems, which combine computer science with engineering applications. Human action detection is one of these areas. Human action detection is an interesting challenge due to its stringent requirements in terms of computing speed and accuracy. High-accuracy real-time object tracking is also considered a significant challenge. This paper integrates the YOLO detection network, which is considered a state-of-the-art tool for real-time object detection, with motion vectors and the Coyote Optimization Algorithm (COA) to construct a real-time human action localization and tracking system. The proposed system starts with the extraction of motion information from a compressed video stream and the extraction of appearance information from RGB frames using an object detector. Then, a fusion step between the two streams is performed, and the results are fed into the proposed action tracking model. The COA is used in object tracking due to its accuracy and fast convergence. The basic foundation of the proposed model is the utilization of motion vectors, which already exist in a compressed video bit stream and provide sufficient information to improve the localization of the target action without requiring high consumption of computational resources compared with other popular methods of extracting motion information, such as optical flows. This advantage allows the proposed approach to be implemented in challenging environments where the computational resources are limited, such as Internet of Things (IoT) systems.Comment: SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEM

    LibOPT: An Open-Source Platform for Fast Prototyping Soft Optimization Techniques

    Full text link
    Optimization techniques play an important role in several scientific and real-world applications, thus becoming of great interest for the community. As a consequence, a number of open-source libraries are available in the literature, which ends up fostering the research and development of new techniques and applications. In this work, we present a new library for the implementation and fast prototyping of nature-inspired techniques called LibOPT. Currently, the library implements 15 techniques and 112 benchmarking functions, as well as it also supports 11 hypercomplex-based optimization approaches, which makes it one of the first of its kind. We showed how one can easily use and also implement new techniques in LibOPT under the C paradigm. Examples are provided with samples of source-code using benchmarking functions

    Motion correction of PET/CT images

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The advances in health care technology help physicians make more accurate diagnoses about the health conditions of their patients. Positron Emission Tomography/Computed Tomography (PET/CT) is one of the many tools currently used to diagnose health and disease in patients. PET/CT explorations are typically used to detect: cancer, heart diseases, disorders in the central nervous system. Since PET/CT studies can take up to 60 minutes or more, it is impossible for patients to remain motionless throughout the scanning process. This movements create motion-related artifacts which alter the quantitative and qualitative results produced by the scanning process. The patient's motion results in image blurring, reduction in the image signal to noise ratio, and reduced image contrast, which could lead to misdiagnoses. In the literature, software and hardware-based techniques have been studied to implement motion correction over medical files. Techniques based on the use of an external motion tracking system are preferred by researchers because they present a better accuracy. This thesis proposes a motion correction system that uses 3D affine registrations using particle swarm optimization and an off-the-shelf Microsoft Kinect camera to eliminate or reduce errors caused by the patient's motion during a medical imaging study

    Intelligent Nanophotonics: Merging Photonics and Artificial Intelligence at the Nanoscale

    Full text link
    Nanophotonics has been an active research field over the past two decades, triggered by the rising interests in exploring new physics and technologies with light at the nanoscale. As the demands of performance and integration level keep increasing, the design and optimization of nanophotonic devices become computationally expensive and time-inefficient. Advanced computational methods and artificial intelligence, especially its subfield of machine learning, have led to revolutionary development in many applications, such as web searches, computer vision, and speech/image recognition. The complex models and algorithms help to exploit the enormous parameter space in a highly efficient way. In this review, we summarize the recent advances on the emerging field where nanophotonics and machine learning blend. We provide an overview of different computational methods, with the focus on deep learning, for the nanophotonic inverse design. The implementation of deep neural networks with photonic platforms is also discussed. This review aims at sketching an illustration of the nanophotonic design with machine learning and giving a perspective on the future tasks.Comment: 46 pages, 14 figures. To appear in Nanophotonic
    • …
    corecore