490 research outputs found

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    PSO Based Deployment of Hybrid Sensor Networks

    Get PDF
    With the rapid increase in the usage of wireless sensor networks, it is emerging as a technology for monitoring various physical activities. The essential characteristics of wireless sensor network are coverage, cost, connectivity and lifetime which are dependent upon the number and type of sensors being used for the required task. A random deployment strategy of sensor nodes may cause coverage holes in the sensing ?eld. The work presented here shall mainly focus on deployment strategy of WSNs which will improve the coverage area that poses the biggest challenge to the developers. Most of the problems related to WSNs are modelled and approached as multi objective functions through various genetic algorithms. PSO is one such technique that is e?cient and computationally e?cient in addressing various issues such as optimising sensor deployment and localization of sensor nodes. A modi?ed particle swarm optimization (PSO) technique using grid based strategy has been proposed for sensor deployment which is capable of e?ciently deploying the sensors with an objective of maximizing the coverage ratio. It will determine the optimum location of the mobile nodes after the initial random deployment .The optimality rate of this approach is also higher as compared to other genetic algorithms

    Extending the Lifetime of Wireless Sensor Networks Based on an Improved Multi-objective Artificial Bees Colony Algorithm

    Get PDF
    Reducing the sensors\u27 energy expenditure to prolong the network lifespan as long as possible remains a fundamental problem in the field of wireless networks. Particularly in applications with inaccessible environments, which impose crucial constraints on sensor replacement. It is, therefore, necessary to design adaptive routing protocols, taking into account the environmental constraints and the limited energy of sensors. To have an energy-efficient routing protocol, a new cluster heads’ (CHs) selection strategy using a modified multi-objective artificial bees colony (MOABC) optimization is defined. The modified MOABC is based on the roulette wheel selection over non-dominated solutions of the repository (hyper-cubes) in which a rank is assigned to each hypercube based on its density in dominated solutions of the current iteration and then a random food source is elected by roulette from the densest hypercube. The proposed work aims to find the optimal set of CHs based on their residual energies to ensure an optimal balance between the nodes\u27 energy consumption. The achieved results proved that the proposed MOABC-based protocol considerably outperforms recent studies and well-known energy-efficient protocols, namely: LEACH, C-LEACH, SEP, TSEP, DEEC, DDEEC, and EDEEC in terms of energy efficiency, stability, and network lifespan extension

    Particle Swarm Optimization for the Clustering of Wireless Sensors

    Get PDF
    Clustering is necessary for data aggregation, hierarchical routing, optimizing sleep patterns, election of extremal sensors, optimizing coverage and resource allocation, reuse of frequency bands and codes, and conserving energy. Optimal clustering is typically an NP-hard problem. Solutions to NP-hard problems involve searches through vast spaces of possible solutions. Evolutionary algorithms have been applied successfully to a variety of NP-hard problems. We explore one such approach, Particle Swarm Optimization (PSO), an evolutionary programming technique where a \u27swarm\u27 of test solutions, analogous to a natural swarm of bees, ants or termites, is allowed to interact and cooperate to find the best solution to the given problem. We use the PSO approach to cluster sensors in a sensor network. The energy efficiency of our clustering in a data-aggregation type sensor network deployment is tested using a modified LEACH-C code. The PSO technique with a recursive bisection algorithm is tested against random search and simulated annealing; the PSO technique is shown to be robust. We further investigate developing a distributed version of the PSO algorithm for clustering optimally a wireless sensor network

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Cobertura Fornecendo em Redes de Sensores Direcionais através de Algoritmos de Aprendizagem (Autômatos de Aprendizagem)

    Get PDF
    Today, wireless sensor networks due to application development are widely used. There are significant issues in these networks; they can be more effective if they would be fixed. One of these problems is the low coverage of these networks due to their low power. If coverage increases only by increasing the power of sending and receiving power, it can increase network consumption as a catastrophic disaster, while the lack of energy is one of the most important constraints on these networks. To do this, the antenna coverage is oriented in some sensor networks to cover the most important places. This method tries to improves the efficiency and coverage of directional sensor networks by providing a mechanism based on the learning algorithm of the machine called learning automata. Results show this method outperform the before methods at least 20%.Hoy en día, las redes de sensores inalámbricos debido al desarrollo de aplicaciones son ampliamente utilizadas. Hay problemas importantes en estas redes; pueden ser más efectivos si se solucionan. Uno de estos problemas es la baja cobertura de estas redes debido a su baja potencia. Si la cobertura aumenta solo elevando la potencia de envío y recepción de energía, puede aumentar el consumo de red como un desastre catastrófico, mientras que la falta de energía es una de las limitaciones más importantes de estas redes. Para hacer esto, la cobertura de la antena está orientada en algunas redes de sensores para cubrir los lugares más importantes. Este método intenta mejorar la eficiencia y la cobertura de las redes de sensores direccionales al proporcionar un mecanismo basado en el algoritmo de aprendizaje de la máquina denominado autómatas de aprendizaje. Los resultados muestran que este método supera los métodos anteriores al menos un 20%.Hoy en día, as redes de sensores inalámbricos debitaram o desenvolvimento de aplicações sonoras extensamente utilizadas. Obras do feno importantes nas redes; pueden ser más effectivos e se solucionan. Uns de esos protes es la baja cobertura de es redes debido a su baja potencia. Se a porta leva sozinho a aumentar a potência de envio e a recepção de energia, aumentar o consumo de energia como um desastre catastrófico, a falta de energia de energia é uma das limitações mais importantes destas redes. Para hacer esto, a cobertura da antena está orientada nas algunas redes de sensores para cubrir os lugares mais importantes. This method intenta mejor a eficiencia and the coverage of the networks of sensors directionals are provided in engine based on the algorithm of aprendizado of the machine denominado autómatas de aprendizaje. Los resultados muestran que este método supera os métodos anteriores a menos de 20%

    A Co-evolutionary Algorithm-based Enhanced Grey Wolf Optimizer for the Routing of Wireless Sensor Networks

    Get PDF
    Wireless networks are frequently installed in arduous environments, heightening the importance of their consistent operation. To achieve this, effective strategies must be implemented to extend the lifespan of nodes. Energy-conserving routing protocols have emerged as the most prevalent methodology, as they strive to elongate the network\u27s lifetime while guaranteeing reliable data routing with minimal latency. In this paper, a plethora of studies have been done with the purpose of improving network routing, such as the integration of clustering techniques, heterogeneity, and swarm intelligence-inspired approaches. A comparative investigation was conducted on a variety of swarm-based protocols, including a new coevolutionary binary grey wolf optimizer (Co-BGWO), a BGWO, a binary whale optimization, and a binary Salp swarm algorithm. The objective was to optimize cluster heads (CHs) positions and their number during the initial stage of both two-level and three-level heterogeneous networks. The study concluded that these newly developed protocols are more reliable, stable, and energy-efficient than the standard SEP and EDEEC heterogeneous protocols. Specifically, in 150 m2 area of interest, the Co-BGWO and BGWO protocols of two levels were found the most efficient, with over than 33% increase in remaining energy percentage compared to SEP, and over 24% more than EDEEC in three-level networks
    corecore