13 research outputs found

    A convergence and diversity guided leader selection strategy for many-objective particle swarm optimization

    Get PDF
    Recently, particle swarm optimizer (PSO) is extended to solve many-objective optimization problems (MaOPs) and becomes a hot research topic in the field of evolutionary computation. Particularly, the leader particle selection (LPS) and the search direction used in a velocity update strategy are two crucial factors in PSOs. However, the LPS strategies for most existing PSOs are not so efficient in high-dimensional objective space, mainly due to the lack of convergence pressure or loss of diversity. In order to address these two issues and improve the performance of PSO in high-dimensional objective space, this paper proposes a convergence and diversity guided leader selection strategy for PSO, denoted as CDLS, in which different leader particles are adaptively selected for each particle based on its corresponding situation of convergence and diversity. In this way, a good tradeoff between the convergence and diversity can be achieved by CDLS. To verify the effectiveness of CDLS, it is embedded into the PSO search process of three well-known PSOs. Furthermore, a new variant of PSO combining with the CDLS strategy, namely PSO/CDLS, is also presented. The experimental results validate the superiority of our proposed CDLS strategy and the effectiveness of PSO/CDLS, when solving numerous MaOPs with regular and irregular Pareto fronts (PFs)

    Improved particle swarm optimization algorithm for multi-reservoir system operation

    Get PDF
    AbstractIn this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm

    A self-organizing weighted optimization based framework for large-scale multi-objective optimization

    Get PDF
    The solving of large-scale multi-objective optimization problem (LSMOP) has become a hot research topic in evolutionary computation. To better solve this problem, this paper proposes a self-organizing weighted optimization based framework, denoted S-WOF, for addressing LSMOPs. Compared to the original framework, there are two main improvements in our work. Firstly, S-WOF simplifies the evolutionary stage into one stage, in which the evaluating numbers of weighted based optimization and normal optimization approaches are adaptively adjusted based on the current evolutionary state. Specifically, regarding the evaluating number for weighted based optimization (i.e., t1), it is larger when the population is in the exploitation state, which aims to accelerate the convergence speed, while t1 is diminishing when the population is switching to the exploration state, in which more attentions are put on the diversity maintenance. On the other hand, regarding the evaluating number for original optimization (i.e., t2), which shows an opposite trend to t1, it is small during the exploitation stage but gradually increases later. In this way, a dynamic trade-off between convergence and diversity is achieved in S-WOF. Secondly, to further improve the search ability in the large-scale decision space, an efficient competitive swarm optimizer (CSO) is implemented in S-WOF, which shows efficiency for solving LSMOPs. Finally, the experimental results have validated the superiority of S-WOF over several state-of-the-art large-scale evolutionary algorithms

    A dynamic multi-objective evolutionary algorithm based on decision variable classification

    Get PDF
    The file attached to this record is the author's final peer reviewed version.In recent years, dynamic multi-objective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multi-objective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multi-objective evolutionary algorithms. Maintaining good balance of population diversity and convergence is critical to the performance of DMOEAs. To address the above issue, a dynamic multi-objective evolutionary algorithm based on decision variable classification (DMOEA-DVC) is proposed in this study. DMOEA-DVC divides the decision variables into two and three different groups in static optimization and change response stages, respectively. In static optimization, two different crossover operators are used for the two decision variable groups to accelerate the convergence while maintaining good diversity. In change response, DMOEA-DVC reinitializes the three decision variable groups by maintenance, prediction, and diversity introduction strategies, respectively. DMOEA-DVC is compared with the other six state-of-the-art DMOEAs on 33 benchmark DMOPs. Experimental results demonstrate that the overall performance of the DMOEA-DVC is superior or comparable to that of the compared algorithms

    MaOMFO: Many-objective moth flame optimizer using reference-point based non-dominated sorting mechanism for global optimization problems

    Get PDF
    Many-objective optimization (MaO) deals with a large number of conflicting objectives in optimization problems to acquire a reliable set of appropriate non-dominated solutions near the true Pareto front, and for the same, a unique mechanism is essential. Numerous papers have reported multi-objective evolutionary algorithms to explain the absence of convergence and diversity variety in many-objective optimization problems. One of the most encouraging methodologies utilizes many reference points to segregate the solutions and guide the search procedure. The above-said methodology is integrated into the basic version of the Moth Flame Optimization (MFO) algorithm for the first time in this paper. The proposed Many-Objective Moth Flame Optimization (MaOMFO) utilizes a set of reference points progressively decided by the hunt procedure of the moth flame. It permits the calculation to combine with the Pareto front yet synchronize the decent variety of the Pareto front. MaOMFO is employed to solve a wide range of unconstrained and constrained benchmark functions and compared with other competitive algorithms, such as non-dominated sorting genetic algorithm, multi-objective evolutionary algorithm based on dominance and decomposition, and novel multi-objective particle swarm optimization using different performance metrics. The results demonstrate the superiority of the algorithm as a new many-objective algorithm for complex many-objective optimization problems

    Multi-Guide Particle Swarm Optimization for Large-Scale Multi-Objective Optimization Problems

    Get PDF
    Multi-guide particle swarm optimization (MGPSO) is a novel metaheuristic for multi-objective optimization based on particle swarm optimization (PSO). MGPSO has been shown to be competitive when compared with other state-of-the-art multi-objective optimization algorithms for low-dimensional problems. However, to the best of the author’s knowledge, the suitability of MGPSO for high-dimensional multi-objective optimization problems has not been studied. One goal of this thesis is to provide a scalability study of MGPSO in order to evaluate its efficacy for high-dimensional multi-objective optimization problems. It is observed that while MGPSO has comparable performance to state-of-the-art multi-objective optimization algorithms, it experiences a performance drop with the increase in the problem dimensionality. Therefore, a main contribution of this work is a new scalable MGPSO-based algorithm, termed cooperative co-evolutionary multi-guide particle swarm optimization (CCMGPSO), that incorporates ideas from cooperative PSOs. A detailed empirical study on well-known benchmark problems comparing the proposed improved approach with various state-of-the-art multi-objective optimization algorithms is done. Results show that the proposed CCMGPSO is highly competitive for high-dimensional problems

    Handling multi-objective optimization problems with a comprehensive indicator and layered particle swarm optimizer

    Get PDF
    The multi-objective particle swarm optimization algorithm has several drawbacks, such as premature convergence, inadequate convergence, and inadequate diversity. This is particularly true for complex, high-dimensional, multi-objective problems, where it is easy to fall into a local optimum. To address these issues, this paper proposes a novel algorithm called IMOPSOCE. The innovations for the proposed algorithm mainly contain three crucial factors: 1) an external archive maintenance strategy based on the inflection point distance and distribution coefficient is designed, and the comprehensive indicator (CM) is used to remove the non-dominated solutions with poor comprehensive performance to improve the convergence of the algorithm and diversity of the swarm; 2) using the random inertia weight strategy to efficiently control the movement of particles, balance the exploration and exploitation capabilities of the swarm, and avoid excessive local and global searches; and 3) offering different flight modes for particles at different levels after each update to further enhance the optimization capacity. Finally, the algorithm is tested on 22 typical test functions and compared with 10 other algorithms, demonstrating its competitiveness and outperformance on the majority of test functions

    Enhanced Harris's Hawk algorithm for continuous multi-objective optimization problems

    Get PDF
    Multi-objective swarm intelligence-based (MOSI-based) metaheuristics were proposed to solve multi-objective optimization problems (MOPs) with conflicting objectives. Harris’s hawk multi-objective optimizer (HHMO) algorithm is a MOSIbased algorithm that was developed based on the reference point approach. The reference point is determined by the decision maker to guide the search process to a particular region in the true Pareto front. However, HHMO algorithm produces a poor approximation to the Pareto front because lack of information sharing in its population update strategy, equal division of convergence parameter and randomly generated initial population. A two-step enhanced non-dominated sorting HHMO (2SENDSHHMO) algorithm has been proposed to solve this problem. The algorithm includes (i) a population update strategy which improves the movement of hawks in the search space, (ii) a parameter adjusting strategy to control the transition between exploration and exploitation, and (iii) a population generating method in producing the initial candidate solutions. The population update strategy calculates a new position of hawks based on the flush-and-ambush technique of Harris’s hawks, and selects the best hawks based on the non-dominated sorting approach. The adjustment strategy enables the parameter to adaptively changed based on the state of the search space. The initial population is produced by generating quasi-random numbers using Rsequence followed by adapting the partial opposition-based learning concept to improve the diversity of the worst half in the population of hawks. The performance of the 2S-ENDSHHMO has been evaluated using 12 MOPs and three engineering MOPs. The obtained results were compared with the results of eight state-of-the-art multi-objective optimization algorithms. The 2S-ENDSHHMO algorithm was able to generate non-dominated solutions with greater convergence and diversity in solving most MOPs and showed a great ability in jumping out of local optima. This indicates the capability of the algorithm in exploring the search space. The 2S-ENDSHHMO algorithm can be used to improve the search process of other MOSI-based algorithms and can be applied to solve MOPs in applications such as structural design and signal processing
    corecore