4,093 research outputs found

    A Review on the Application of Natural Computing in Environmental Informatics

    Get PDF
    Natural computing offers new opportunities to understand, model and analyze the complexity of the physical and human-created environment. This paper examines the application of natural computing in environmental informatics, by investigating related work in this research field. Various nature-inspired techniques are presented, which have been employed to solve different relevant problems. Advantages and disadvantages of these techniques are discussed, together with analysis of how natural computing is generally used in environmental research.Comment: Proc. of EnviroInfo 201

    Estimation of biochemical variables using quantumbehaved particle swarm optimization (QPSO)-trained radius basis function neural network: A case study of fermentation process of L-glutamic acid

    Get PDF
    Due to the difficulties in the measurement of biochemical variables in fermentation process, softsensing model based on radius basis function neural network had been established for estimating the variables. To generate a more efficient neural network estimator, we employed the previously proposed quantum-behaved particle swarm optimization (QPSO) algorithm for neural network training. The experiment results of L-glutamic acid fermentation process showed that our established estimator could predict variables such as the concentrations of glucose, biomass and glutamic acid with higher accuracy than the estimator trained by the most widely used orthogonal least squares (OLS). According to its global convergence, QPSO generated a group of more proper network parameters than the most popular OLS. Thus, QPSO-RBF estimator was more favorable to the control and fault diagnosis of the fermentation process, and consequently, it increased the yield of fermentation.Key words: Soft-sensing model, quantum-behaved particle swarm optimization algorithm, neural network

    Intelligent Robotics Navigation System: Problems, Methods, and Algorithm

    Get PDF
    This paper set out to supplement new studies with a brief and comprehensible review of the advanced development in the area of the navigation system, starting from a single robot, multi-robot, and swarm robots from a particular perspective by taking insights from these biological systems. The inspiration is taken from nature by observing the human and the social animal that is believed to be very beneficial for this purpose. The intelligent navigation system is developed based on an individual characteristic or a social animal biological structure. The discussion of this paper will focus on how simple agent’s structure utilizes flexible and potential outcomes in order to navigate in a productive and unorganized surrounding. The combination of the navigation system and biologically inspired approach has attracted considerable attention, which makes it an important research area in the intelligent robotic system. Overall, this paper explores the implementation, which is resulted from the simulation performed by the embodiment of robots operating in real environments

    Feed-Forward Neural Network Soft-Sensor Modeling of Flotation Process Based on Particle Swarm Optimization and Gravitational Search Algorithm

    Get PDF
    For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, a feed-forward neural network (FNN) based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO) algorithm and gravitational search algorithm (GSA) is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process

    Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management

    Get PDF
    The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management
    • …
    corecore