17 research outputs found

    A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments

    Get PDF
    This article is posted here with permission from the IEEE - Copyright @ 2010 IEEEIn the real world, many optimization problems are dynamic. This requires an optimization algorithm to not only find the global optimal solution under a specific environment but also to track the trajectory of the changing optima over dynamic environments. To address this requirement, this paper investigates a clustering particle swarm optimizer (PSO) for dynamic optimization problems. This algorithm employs a hierarchical clustering method to locate and track multiple peaks. A fast local search method is also introduced to search optimal solutions in a promising subregion found by the clustering method. Experimental study is conducted based on the moving peaks benchmark to test the performance of the clustering PSO in comparison with several state-of-the-art algorithms from the literature. The experimental results show the efficiency of the clustering PSO for locating and tracking multiple optima in dynamic environments in comparison with other particle swarm optimization models based on the multiswarm method.This work was supported by the Engineering and Physical Sciences Research Council of U.K., under Grant EP/E060722/1

    Intelligent Leukaemia Diagnosis with Bare-Bones PSO based Feature Optimization

    Get PDF
    In this research, we propose an intelligent decision support system for acute lymphoblastic leukaemia (ALL) diagnosis using microscopic images. Two Bare-bones Particle Swarm Optimization (BBPSO) algorithms are proposed to identify the most significant discriminative characteristics of healthy and blast cells to enable efficient ALL classification. The first BBPSO variant incorporates accelerated chaotic search mechanisms of food chasing and enemy avoidance to diversify the search and mitigate the premature convergence of the original BBPSO algorithm. The second BBPSO variant exhibits both of the abovementioned new search mechanisms in a subswarm-based search. Evaluated with the ALL-IDB2 database, both proposed algorithms achieve superior geometric mean performances of 94.94% and 96.25%, respectively, and outperform other metaheuristic search and related methods significantly for ALL classification

    Data and Feature Reduction in Fuzzy Modeling through Particle Swarm Optimization

    Get PDF
    The study is concerned with data and feature reduction in fuzzy modeling. As these reduction activities are advantageous to fuzzy models in terms of both the effectiveness of their construction and the interpretation of the resulting models, their realization deserves particular attention. The formation of a subset of meaningful features and a subset of essential instances is discussed in the context of fuzzy-rule-based models. In contrast to the existing studies, which are focused predominantly on feature selection (namely, a reduction of the input space), a position advocated here is that a reduction has to involve both data and features to become efficient to the design of fuzzy model. The reduction problem is combinatorial in its nature and, as such, calls for the use of advanced optimization techniques. In this study, we use a technique of particle swarm optimization (PSO) as an optimization vehicle of forming a subset of features and data (instances) to design a fuzzy model. Given the dimensionality of the problem (as the search space involves both features and instances), we discuss a cooperative version of the PSO along with a clustering mechanism of forming a partition of the overall search space. Finally, a series of numeric experiments using several machine learning data sets is presented

    Multiobjective particle swarm optimization: Integration of dynamic population and multiple-swarm concepts and constraint handling

    Get PDF
    Scope and Method of Study: Over the years, most multiobjective particle swarm optimization (MOPSO) algorithms are developed to effectively and efficiently solve unconstrained multiobjective optimization problems (MOPs). However, in the real world application, many optimization problems involve a set of constraints (functions). In this study, the first research goal is to develop state-of-the-art MOPSOs that incorporated the dynamic population size and multipleswarm concepts to exploit possible improvement in efficiency and performance of existing MOPSOs in solving the unconstrained MOPs. The proposed MOPSOs are designed in two different perspectives: 1) dynamic population size of multiple-swarm MOPSO (DMOPSO) integrates the dynamic swarm population size with a fixed number of swarms and other strategies to support the concepts; and 2) dynamic multiple swarms in multiobjective particle swarm optimization (DSMOPSO), dynamic swarm strategy is incorporated wherein the number of swarms with a fixed swarm size is dynamically adjusted during the search process. The second research goal is to develop a MOPSO with design elements that utilize the PSO's key mechanisms to effectively solve for constrained multiobjective optimization problems (CMOPs).Findings and Conclusions: DMOPSO shows competitive to selected MOPSOs in producing well approximated Pareto front with improved diversity and convergence, as well as able to contribute reduced computational cost while DSMOPSO shows competitive results in producing well extended, uniformly distributed, and near optimum Pareto fronts, with reduced computational cost for some selected benchmark functions. Sensitivity analysis is conducted to study the impact of the tuning parameters on the performance of DSMOPSO and to provide recommendation on parameter settings. For the proposed constrained MOPSO, simulation results indicate that it is highly competitive in solving the constrained benchmark problems

    Particle Swarm Optimization with Double Learning Patterns

    Get PDF
    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    An intelligent decision support system for acute lymphoblastic leukaemia detection

    Get PDF
    The morphological analysis of blood smear slides by haematologists or haematopathologists is one of the diagnostic procedures available to evaluate the presence of acute leukaemia. This operation is a complex and costly process, and often lacks standardized accuracy owing to a variety of factors, including insufficient expertise and operator fatigue. This research proposes an intelligent decision support system for automatic detection of acute lymphoblastic leukaemia (ALL) using microscopic blood smear images to overcome the above barrier. The work has four main key stages. (1) Firstly, a modified marker-controlled watershed algorithm integrated with the morphological operations is proposed for the segmentation of the membrane of the lymphocyte and lymphoblast cell images. The aim of this stage is to isolate a lymphocyte/lymphoblast cell membrane from touching and overlapping of red blood cells, platelets and artefacts of the microscopic peripheral blood smear sub-images. (2) Secondly, a novel clustering algorithm with stimulating discriminant measure (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of the nucleus and cytoplasm of lymphocytic cell membranes. The SDM measures are used in conjunction with Genetic Algorithm for the clustering of nucleus, cytoplasm, and background regions. (3) Thirdly, a total of eighty features consisting of shape, texture, and colour information from the nucleus and cytoplasm of the identified lymphocyte/lymphoblast images are extracted. (4) Finally, the proposed feature optimisation algorithm, namely a variant of Bare-Bones Particle Swarm Optimisation (BBPSO), is presented to identify the most significant discriminative characteristics of the nucleus and cytoplasm segmented by the SDM-based clustering algorithm. The proposed BBPSO variant algorithm incorporates Cuckoo Search, Dragonfly Algorithm, BBPSO, and local and global random walk operations of uniform combination, and Lévy flights to diversify the search and mitigate the premature convergence problem of the conventional BBPSO. In addition, it also employs subswarm concepts, self-adaptive parameters, and convergence degree monitoring mechanisms to enable fast convergence. The optimal feature subsets identified by the proposed algorithm are subsequently used for ALL detection and classification. The proposed system achieves the highest classification accuracy of 96.04% and significantly outperforms related meta-heuristic search methods and related research for ALL detection

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    A Novel Enhanced Quantum PSO for Optimal Network Configuration in Heterogeneous Industrial IoT

    Get PDF
    A novel enhanced quantum particle swarm optimization algorithm for IIoT deployments is proposed. It provides enhanced connectivity, reduced energy consumption, and optimized delay. We consider heterogeneous scenarios of network topologies for optimal path configuration by exploring and exploiting the hunts. It uses multiple inputs from heterogeneous IIoT into quantum and bio-inspired optimization techniques. The differential evolution operator and crossover operations are used for information interchange among the nodes to avoid trapping into local minima. The different topology scenarios are simulated to study the impact of pp -degrees of connectivity concerning objective functions’ evaluation and compared with existing techniques. The results demonstrate that our algorithm consumes a minimum of 30.3% lesser energy. Furthermore, it offers improved searching precision and convergence swiftness in the possible search space for pp -disjoint paths and reduces the delay by a minimum of 26.7%. Our algorithm also improves the throughput by a minimum of 29.87% since the quantum swarm inclines to generate additional diverse paths from multiple source nodes to the gateway
    corecore