211 research outputs found

    A closed device to generate vortex flow using PZT

    Get PDF
    This paper reports for the first time a millimeter scale fully packaged device which generates a vortex flow of high velocity. The flow which is simply actuated by a PZT diaphragm circulates with a higher velocity after each actuating circle to form a vortex in a desired chamber. The design of such device is firstly conducted by a numerical analysis using OpenFOAM. Several numerical results are considered as the base of our experiment where a flow vortex is observed by a high speed camera. The present device is potential in various applications related to the inertial sensing, fluidic amplifier and micro/nano particle trapping and mixing

    Vortex flow generator utilizing synthetic jets by diaphragm vibration

    Get PDF
    This paper develops a millimeter scale fully packaged device in which a vortex flow of high velocity is generated inside a chamber. Under the actuation by a lead zirconate titanate (PZT) diaphragm, a flow circulates with increasing velocity after each actuating circle to form a vortex in a cavity named as the vortex chamber. At each cycle, the vibration of the PZT diaphragm creates a small net air flow through a rectifying nozzle, generates a synthetic jet which propagates by a gradual circulation toward the vortex chamber and then backward the feedback chamber. The design of such device is firstly conducted by a numerical analysis whose results are considered as the base of our experimental set-up. A vortex flow generated in the votex chamber was observed by a high-speed camera. The present approach which was illustrated by both the simulation and experiment is potential in various applications related to the inertial sensing, fluidic amplifier and micro/nano particle trapping and mixing

    A study of ion wind generator using parallel arranged electrode configuration for centrifugal flow mixer

    Get PDF
    Ion wind is recently applied in various research areas such as the biomedical engineering, microfluidic mixing and particle manipulation. In this work, a bipolar ion wind generator configured by parallel arranged electrodes is used for centrifugal mixing applications. With the proposed configuration, negative and positive ion winds are simultaneously generated, mixed and then neutralized by each other while travelling toward liquid surface. The efficiency of the device was investigated both computationally and experimentally. The mixing of liquid occurred in different ways when the system is activated by either direct or alternating currents. Furthermore, the mixing is dependent on the dimension of electrode tip

    Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics

    Get PDF
    This article reviews acoustic microfiuidics: the use of acoustic fields, principally ultrasonics, for application in microfiuidics. Although acoustics is a classical field, its promising, and indeed perplexing, capabilities in powerfully manipulating both fluids and particles within those fluids on the microscale to nanoscale has revived interest in it. The bewildering state of the literature and ample jargon from decades of research is reorganized and presented in the context of models derived from first principles. This hopefully will make the area accessible for researchers with experience in materials science, fluid mechanics, or dynamics. The abundance of interesting phenomena arising from nonlinear interactions in ultrasound that easily appear at these small scales is considered, especially in surface acoustic wave devices that are simple to fabricate with planar lithography techniques common in microfluidics, along with the many applications in microfluidics and nanofluidics that appear through the literature

    Acoustic Wave Based Microfluidics and Lab-on-a-Chip

    Get PDF

    Design and fabrication of novel microfluidic systems for microsphere generation

    Get PDF
    In this thesis, a study of the rational design and fabrication of microfluidic systems for microsphere generation is presented. The required function of microfluidic systems is to produce microspheres with the following attributes: (i) the microsphere size being around one micron or less, (ii) the size uniformity (in particular coefficient of variation (CV)) being less than 5%, and (iii) the size range being adjustable as widely as possible. Micro-electro-mechanical system (MEMS) technology, largely referring to various micro-fabrication techniques in the context of this thesis, has been applied for decades to develop microfluidic systems that can fulfill the foregoing required function of microsphere generation; however, this goal has yet to be achieved. To change this situation was a motivation of the study presented in this thesis. The philosophy behind this study stands on combining an effective design theory and methodology called Axiomatic Design Theory (ADT) with advanced micro-fabrication techniques for the microfluidic systems development. Both theoretical developments and experimental validations were carried out in this study. Consequently, the study has led to the following conclusions: (i) Existing micro-fluidic systems are coupled designs according to ADT, which is responsible for a limited achievement of the required function; (ii) Existing micro-fabrication techniques, especially for pattern transfer, have difficulty in producing a typical feature of micro-fluidic systems - that is, a large overall size (~ mm) of the device but a small channel size (~nm); and (iii) Contemporary micro-fabrication techniques to the silicon-based microfluidic system may have reached a size limit for microspheres, i.e., ~1 micron. Through this study, the following contributions to the field of the microfluidic system technology have been made: (i) Producing three rational designs of microfluidic systems, device 1 (perforated silicon membrane), device 2 (integration of hydrodynamic flow focusing and crossflow principles), and device 3 (liquid chopper using a piezoelectric actuator), with each having a distinct advantage over the others and together having achieved the requirements, size uniformity (CV ≤ 5%) and size controllability (1-186 µm); (ii) Proposing a new pattern transfer technique which combines a photolithography process with a direct writing lithography process (e.g., focused ion beam process); (iii) Proposing a decoupled design principle for micro-fluidic systems, which is effective in improving microfluidic systems for microsphere generation and is likely applicable to microfluidic systems for other applications; and (iv) Developing the mathematical models for the foregoing three devices, which can be used to further optimize the design and the microsphere generation process

    Nonreciprocity Applications in Acoustics and Microfluidic Systems

    Get PDF
    Breaking reciprocity in linear acoustic systems and designing a novel actuator for the nonreciprocal valveless pumps are studied in this dissertation. The first part was started by deriving the acoustic governing equations in a moving wave propagation medium. It was shown thatthe Coriolis acceleration term appears ina cross-product term with the wave vector. It means the main reason for breaking reciprocity in the circular fluid flow is the Coriolis acceleration term. Finally, the governing equations were solved numerically by COMSOL Multiphysics software. Moreover, Green`s second identity was used as a complimentary method to prove breaking reciprocityin such a system with moving medium. It is concluded that the non-reciprocity is magnified by increasing the angular velocity of the fluid system. The second part of this thesis is about achieving non-reciprocity utilizing the arrangement of a nozzle and diffuser as the inlet and outlet ports. This part’s goal is to design a novel flexible actuator design for a valveless pump. The actuation mechanism which is novel in its own term, uses liquid metal called galinstan, a non-magnetic but electrically conducting alloy. In the designed device, an alternating current (AC) is applied onto a microchannel filled with galinstan. This device is placed between two permanent magnets with opposing poles. Due to the Lorentz force law, there will be radial in-plane forces on the polymeric flexible substrate. These in-plane forces radially contract and expand the circular diaphragm to provide an upward and downward out of plane bending moment, which causes an oscillatory reciprocating movement similar to a piezoelectric actuator`s movement. Compared to the traditional piezo electric materials such as Lead Zirconate Titanate (PZT), this actuator has numerous advantages such as being flexible, having the ability to be scaled down, being formed as an integrated structure, and being fabricated by a considerably simple process. The prototype of the pump could be fabricated easily with Platinum Silicone rubber and some low-cost 3D printed elements. Although the prototype has been fabricated in a relatively large size, it is considered as a proper conceptual model representing the performance of the pump

    DESIGN, FABRICATION, AND TESTING OF A PDMS MICROPUMP WITH MOVING MEMBRANES

    Get PDF
    This paper will discuss the design, fabrication, and testing of a Poly(dimethylsiloxane) (PDMS) microfluidic pump. PDMS is commonly described as a soft polymer with very appealing chemical and physical properties such as optical transparency, low permeability to water, elasticity, low electrical conductivity, and flexible surface chemistry. PDMS microfluidic device fabrication is done easily with the use of soft lithography and rapid prototyping. PDMS microfluidic devices make it easier to integrate components and interface devices with particular users, than using typically harder materials such as glass and silicon. Fabrication and design of single and multilayer PDMS microfluidic devices is much easier and straightforward than traditional methods. A novel design of a PDMS micropump with multiple vibrating membranes has been developed for application in drug delivery and molecule sorting. The PDMS micropump consists of three nozzle/diffuser elements with vibrating membranes, which are used to create pressure difference in the pump chamber. Preliminary analysis of the fluidic characteristics of the micropump was analyzed with ANSYS to investigate the transient responses of fluid velocity, pressure distributions, and flow rate during the operating cycle of the micropump. The design simulation results showed that the movement of the wall membranes combined with rectification behavior of three nozzle/diffuser elements can minimize back flow and improve net flow in one direction. To prove that the theoretical design is valid, the fabrication and testing process of the micropump has been carried out and completed. This paper will discuss in depth the design, fabrication, and testing of the PDMS micropump

    Real-time image-based feedback for microfluidic applications

    Get PDF
    The field of microfluidics has been solving problems on the micro-scale for decades, but many in-flow analysis techniques only take single dimensional measurements. In this thesis, multi-dimensional, real-time image analysis has been used to improve and expand upon current microfluidic techniques in several microfluidic areas. Microdroplets within microfluidics are a promising technique for creating microscopic vessels for chemical and biochemical experiments, however accurately controlling such tiny objects can be difficult. The use of real-time image feedback has dramatically improved the monodispersity (coefficient of variation of 0.32%) and accurate loading of the contents of droplets. Beyond this, using these techniques, real-time analysis on the morphology of living cells can be carried out and used to isolate cells of interest. Machine learning algorithms have provided a rapid method to identify the cell populations based on quantitative parameters extracted from transmission or fluorescent images of the cells. By integrating fast piezo-based fluid manipulation, highly selective and accurate cell sorting can be performed within a lab-on-a-chip device for the isolation of subpopulations of cells based on their morphological features. Using this method, K562 cells have been sorted from a mixed population with an efficiency of 91.3% and a purity of 99.4%
    • …
    corecore