486 research outputs found

    An efficient message passing algorithm for multi-target tracking

    Get PDF
    We propose a new approach for multi-sensor multi-target tracking by constructing statistical models on graphs with continuous-valued nodes for target states and discrete-valued nodes for data association hypotheses. These graphical representations lead to message-passing algorithms for the fusion of data across time, sensor, and target that are radically different than algorithms such as those found in state-of-the-art multiple hypothesis tracking (MHT) algorithms. Important differences include: (a) our message-passing algorithms explicitly compute different probabilities and estimates than MHT algorithms; (b) our algorithms propagate information from future data about past hypotheses via messages backward in time (rather than doing this via extending track hypothesis trees forward in time); and (c) the combinatorial complexity of the problem is manifested in a different way, one in which particle-like, approximated, messages are propagated forward and backward in time (rather than hypotheses being enumerated and truncated over time). A side benefit of this structure is that it automatically provides smoothed target trajectories using future data. A major advantage is the potential for low-order polynomial (and linear in some cases) dependency on the length of the tracking interval N, in contrast with the exponential complexity in N for so-called N-scan algorithms. We provide experimental results that support this potential. As a result, we can afford to use longer tracking intervals, allowing us to incorporate out-of-sequence data seamlessly and to conduct track-stitching when future data provide evidence that disambiguates tracks well into the past

    Dynamic Compressive Sensing of Time-Varying Signals via Approximate Message Passing

    Full text link
    In this work the dynamic compressive sensing (CS) problem of recovering sparse, correlated, time-varying signals from sub-Nyquist, non-adaptive, linear measurements is explored from a Bayesian perspective. While there has been a handful of previously proposed Bayesian dynamic CS algorithms in the literature, the ability to perform inference on high-dimensional problems in a computationally efficient manner remains elusive. In response, we propose a probabilistic dynamic CS signal model that captures both amplitude and support correlation structure, and describe an approximate message passing algorithm that performs soft signal estimation and support detection with a computational complexity that is linear in all problem dimensions. The algorithm, DCS-AMP, can perform either causal filtering or non-causal smoothing, and is capable of learning model parameters adaptively from the data through an expectation-maximization learning procedure. We provide numerical evidence that DCS-AMP performs within 3 dB of oracle bounds on synthetic data under a variety of operating conditions. We further describe the result of applying DCS-AMP to two real dynamic CS datasets, as well as a frequency estimation task, to bolster our claim that DCS-AMP is capable of offering state-of-the-art performance and speed on real-world high-dimensional problems.Comment: 32 pages, 7 figure

    Colocated multiple-input multiple-output radars for smart mobility

    Get PDF
    In recent years, radars have been used in many applications such as precision agriculture and advanced driver assistant systems. Optimal techniques for the estimation of the number of targets and of their coordinates require solving multidimensional optimization problems entailing huge computational efforts. This has motivated the development of sub-optimal estimation techniques able to achieve good accuracy at a manageable computational cost. Another technical issue in advanced driver assistant systems is the tracking of multiple targets. Even if various filtering techniques have been developed, new efficient and robust algorithms for target tracking can be devised exploiting a probabilistic approach, based on the use of the factor graph and the sum-product algorithm. The two contributions provided by this dissertation are the investigation of the filtering and smoothing problems from a factor graph perspective and the development of efficient algorithms for two and three-dimensional radar imaging. Concerning the first contribution, a new factor graph for filtering is derived and the sum-product rule is applied to this graphical model; this allows to interpret known algorithms and to develop new filtering techniques. Then, a general method, based on graphical modelling, is proposed to derive filtering algorithms that involve a network of interconnected Bayesian filters. Finally, the proposed graphical approach is exploited to devise a new smoothing algorithm. Numerical results for dynamic systems evidence that our algorithms can achieve a better complexity-accuracy tradeoff and tracking capability than other techniques in the literature. Regarding radar imaging, various algorithms are developed for frequency modulated continuous wave radars; these algorithms rely on novel and efficient methods for the detection and estimation of multiple superimposed tones in noise. The accuracy achieved in the presence of multiple closely spaced targets is assessed on the basis of both synthetically generated data and of the measurements acquired through two commercial multiple-input multiple-output radars

    Variational message passing for online polynomial NARMAX identification

    Get PDF
    We propose a variational Bayesian inference procedure for online nonlinear system identification. For each output observation, a set of parameter posterior distributions is updated, which is then used to form a posterior predictive distribution for future outputs. We focus on the class of polynomial NARMAX models, which we cast into probabilistic form and represent in terms of a Forney-style factor graph. Inference in this graph is efficiently performed by a variational message passing algorithm. We show empirically that our variational Bayesian estimator outperforms an online recursive least-squares estimator, most notably in small sample size settings and low noise regimes, and performs on par with an iterative least-squares estimator trained offline.Comment: 6 pages, 4 figures. Accepted to the American Control Conference 202

    Towards Universal Probabilistic Programming with Message Passing on Factor Graphs

    Get PDF

    Towards Universal Probabilistic Programming with Message Passing on Factor Graphs

    Get PDF

    Approximation methods for latent variable models

    Get PDF
    Modern statistical models are often intractable, and approximation methods can be required to perform inference on them. Many different methods can be employed in most contexts, but not all are fully understood. The current thesis is an investigation into the use of various approximation methods for performing inference on latent variable models. Composite likelihoods are used as surrogates for the likelihood function of state space models (SSM). In chapter 3, variational approximations to their evaluation are investigated, and the interaction of biases as composite structure changes is observed. The bias effect of increasing the block size in composite likelihoods is found to balance the statistical benefit of including more data in each component. Predictions and smoothing estimates are made using approximate Expectation- Maximisation (EM) techniques. Variational EM estimators are found to produce predictions and smoothing estimates of a lesser quality than stochastic EM estimators, but at a massively reduced computational cost. Surrogate latent marginals are introduced in chapter 4 into a non-stationary SSM with i.i.d. replicates. They are cheap to compute, and break functional dependencies on parameters for previous time points, giving estimation algorithms linear computational complexity. Gaussian variational approximations are integrated with the surrogate marginals to produce an approximate EM algorithm. Using these Gaussians as proposal distributions in importance sampling is found to offer a positive trade-off in terms of the accuracy of predictions and smoothing estimates made using estimators. A cheap to compute model based hierarchical clustering algorithm is proposed in chapter 5. A cluster dissimilarity measure based on method of moments estimators is used to avoid likelihood function evaluation. Computation time for hierarchical clustering sequences is further reduced with the introduction of short-lists that are linear in the number of clusters at each iteration. The resulting clustering sequences are found to have plausible characteristics in both real and synthetic datasets

    Poisson Multi-Bernoulli Mixtures for Multiple Object Tracking

    Get PDF
    Multi-object tracking (MOT) refers to the process of estimating object trajectories of interest based on sequences of noisy sensor measurements obtained from multiple sources. Nowadays, MOT has found applications in numerous areas, including, e.g., air traffic control, maritime navigation, remote sensing, intelligent video surveillance, and more recently environmental perception, which is a key enabling technology in automated vehicles. This thesis studies Poisson multi-Bernoulli mixture (PMBM) conjugate priors for MOT. Finite Set Statistics provides an elegant Bayesian formulation of MOT based on random finite sets (RFSs), and a significant trend in RFSs-based MOT is the development of conjugate distributions in Bayesian probability theory, such as the PMBM distributions. Multi-object conjugate priors are of great interest as they provide families of distributions that are suitable to work with when seeking accurate approximations to the true posterior distributions. Many RFS-based MOT approaches are only concerned with multi-object filtering without attempting to estimate object trajectories. An appealing approach to building trajectories is by computing the multi-object densities on sets of trajectories. This leads to the development of many multi-object filters based on sets of trajectories, e.g., the trajectory PMBM filters. In this thesis, [Paper A] and [Paper B] consider the problem of point object tracking where an object generates at most one measurement per time scan. In [Paper A], a multi-scan implementation of trajectory PMBM filters via dual decomposition is presented. In [Paper B], a multi-trajectory particle smoother using backward simulation is presented for computing the multi-object posterior for sets of trajectories using a sequence of multi-object filtering densities and a multi-object dynamic model. [Paper C] and [Paper D] consider the problem of extended object tracking where an object may generate multiple measurements per time scan. In [Paper C], an extended object Poisson multi-Bernoulli (PMB) filter is presented, where the PMBM posterior density after the update step is approximated as a PMB. In [Paper D], a trajectory PMB filter for extended object tracking using belief propagation is presented, where the efficient PMB approximation is enabled by leveraging the PMBM conjugacy and the factor graph formulation
    • …
    corecore