32,834 research outputs found

    Packing Characteristics of Different Shaped Proppants for use with Hydrofracing - A Numerical Investigation using 3D FEMDEM

    Get PDF
    Imperial Users onl

    Solar sustained plasma/absorber conceptual design

    Get PDF
    A space power system concept was evaluated which uses concentrated solar energy to heat a working fluid to temperatures as high as 4000 K. The high temperature working fluid could be used for efficient electric power production in advanced thermal or magnetohydrodynamic conversion cycles. Energy absorber configurations utilizing particles or cesium vapor absorber material were investigaed. Results of detailed radiant heat transfer calculations indicated approximately 86 percent of the incident solar energy could be absorbed within a 12-cm-dia flowing stream of gas borne carbon particles. Calculated total energy absorption in the cesium vapor seeded absorber configuration ranged from 34 percent to 64 percent of the incident solar energy. Solar flux concentration ratios of between approximately 3000 and 10,000 will be required to sustain absorber temperatures in the range from 3000 K to 4000 K

    Droplet formation in microfluidic cross-junctions

    Get PDF
    Using a lattice Boltzmann multiphase model, three-dimensional numerical simulations have been performed to understand droplet formation in microfluidic cross-junctions at low capillary numbers. Flow regimes, consequence of interaction between two immiscible fluids, are found to be dependent on the capillary number and flow rates of the continuous and dispersed phases. A regime map is created to describe the transition from droplets formation at a cross-junction (DCJ), downstream of cross-junction to stable parallel flows. The influence of flow rate ratio, capillary number, and channel geometry is then systematically studied in the squeezing-pressure-dominated DCJ regime. The plug length is found to exhibit a linear dependence on the flow rate ratio and obey power-law behavior on the capillary number. The channel geometry plays an important role in droplet breakup process. A scaling model is proposed to predict the plug length in the DCJ regime with the fitting constants depending on the geometrical parameters

    Multiphase Stirred Tank Bioreactors – New Geometrical Concepts and Scale‐up Approaches

    Get PDF
    Mainly with respect to biotechnological cases, current developments in the field of impeller geometries and findings for multistage configurations with a specific view on aerated stirred tanks are reviewed. Although often the first choice, in the given case the 6‐straight blade disc turbine is usually not the best option. Furthermore, quantities usable for scale‐up, specifically applicable in this field are discussed. Only quantities taking local conditions into account appear to be able to actually compare different stirrer types and scales.DFG, 56091768, TRR 63: Integrierte chemische Prozesse in flüssigen MehrphasensystemenDFG, 315464571, Interaktion der mechanischen Beanspruchung und der Produktivität von biologischen Agglomeraten in RührfermenternDFG, 256647858, Stoffübergang von aufsteigenden Blasen in reagierenden FlüssigphasenTU Berlin, Open-Access-Mittel - 201
    corecore