4,928 research outputs found

    Bat Algorithm: Literature Review and Applications

    Full text link
    Bat algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last 3 years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarized briefly here. Further research topics are also discussed.Comment: 10 page

    Binary Particle Swarm Optimization based Biclustering of Web usage Data

    Full text link
    Web mining is the nontrivial process to discover valid, novel, potentially useful knowledge from web data using the data mining techniques or methods. It may give information that is useful for improving the services offered by web portals and information access and retrieval tools. With the rapid development of biclustering, more researchers have applied the biclustering technique to different fields in recent years. When biclustering approach is applied to the web usage data it automatically captures the hidden browsing patterns from it in the form of biclusters. In this work, swarm intelligent technique is combined with biclustering approach to propose an algorithm called Binary Particle Swarm Optimization (BPSO) based Biclustering for Web Usage Data. The main objective of this algorithm is to retrieve the global optimal bicluster from the web usage data. These biclusters contain relationships between web users and web pages which are useful for the E-Commerce applications like web advertising and marketing. Experiments are conducted on real dataset to prove the efficiency of the proposed algorithms

    Recommendation Systems Based on Association Rule Mining for a Target Object by Evolutionary Algorithms

    Get PDF
    Recommender systems are designed for offering products to the potential customers. Collaborative Filtering is known as a common way in Recommender systems which offers recommendations made by similar users in the case of entering time and previous transactions. Low accuracy of suggestions due to a database is one of the main concerns about collaborative filtering recommender systems. In this field, numerous researches have been done using associative rules for recommendation systems to improve accuracy but runtime of rule-based recommendation systems is high and cannot be used in the real world. So, many researchers suggest using evolutionary algorithms for finding relative best rules at runtime very fast. The present study investigated the works done for producing associative rules with higher speed and quality. In the first step Apriori-based algorithm will be introduced which is used for recommendation systems and then the Particle Swarm Optimization algorithm will be described and the issues of these 2 work will be discussed. Studying this research could help to know the issues in this research field and produce suggestions which have higher speed and quality

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Optimization Design Method of IIR Digital Filters for Robot Force Position Sensors

    Get PDF

    Bibliometric of Feature Selection Using Optimization Techniques in Healthcare using Scopus and Web of Science Databases

    Get PDF
    Feature selection technique is an important step in the prediction and classification process, primarily in data mining related aspects or related to medical field. Feature selection is immersive with the errand of choosing a subset of applicable features that could be utilized in developing a prototype. Medical datasets are huge in size; hence some effective optimization techniques are required to produce accurate results. Optimization algorithms are a critical function in medical data mining particularly in identifying diseases since it offers excellent effectiveness in minimum computational expense and time. The classification algorithms also produce superior outcomes when an objective function is built using the feature selection algorithm. The solitary motive of the research paper analysis is to comprehend the reach and utility of optimization algorithms such as the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO) and the Ant Colony Optimization (ACO) in the field of Health care. The aim is to bring efficiency and maximum optimization in the health care sector using the vast information that is already available related to these fields. With the help of data sets that are available in the health care analysis, our focus is to extract the most important features using optimization techniques and work on different algorithms so as to get the most optimized result. Precision largely depends on usefulness of features that are taken into consideration along with finding useful patterns in those features to characterize the main problem. The Performance of the optimized algorithm finds the overall optimum with less function evaluation. The principle target of this examination is to optimize feature selection technique to bring an optimized and efficient model to cater to various health issues. In this research paper, to do bibliometric analysis Scopus and Web of Science databases are used. This bibliometric analysis considers important keywords, datasets, significance of the considered research papers. It also gives details about types, sources of publications, yearly publication trends, significant countries from Scopus and Web of Science. Also, it captures details about co-appearing keywords, authors, source titles through networked diagrams. In a way, this research paper can be useful to researchers who want to contribute in the area of feature selection and optimization in healthcare. From this research paper it is observed that there is a lot scope for research for the considered research area. This kind of research will also be helpful for analyzing pandemic scenarios like COVID-19

    PSO based Neural Networks vs. Traditional Statistical Models for Seasonal Time Series Forecasting

    Full text link
    Seasonality is a distinctive characteristic which is often observed in many practical time series. Artificial Neural Networks (ANNs) are a class of promising models for efficiently recognizing and forecasting seasonal patterns. In this paper, the Particle Swarm Optimization (PSO) approach is used to enhance the forecasting strengths of feedforward ANN (FANN) as well as Elman ANN (EANN) models for seasonal data. Three widely popular versions of the basic PSO algorithm, viz. Trelea-I, Trelea-II and Clerc-Type1 are considered here. The empirical analysis is conducted on three real-world seasonal time series. Results clearly show that each version of the PSO algorithm achieves notably better forecasting accuracies than the standard Backpropagation (BP) training method for both FANN and EANN models. The neural network forecasting results are also compared with those from the three traditional statistical models, viz. Seasonal Autoregressive Integrated Moving Average (SARIMA), Holt-Winters (HW) and Support Vector Machine (SVM). The comparison demonstrates that both PSO and BP based neural networks outperform SARIMA, HW and SVM models for all three time series datasets. The forecasting performances of ANNs are further improved through combining the outputs from the three PSO based models.Comment: 4 figures, 4 tables, 31 references, conference proceeding
    corecore