49 research outputs found

    Robust Adaptive Detection of Buried Pipes using GPR

    Get PDF
    International audienceDetection of buried objects such as pipes using a Ground Penetrating Radar (GPR) is intricate for three main reasons. First, noise is important in the resulting image because of the presence of several rocks and/or layers in the ground, highly influencing the Probability of False Alarm (PFA) level. Also, wave speed and object responses are unknown in the ground and depend on the relative permit-tivity, which is not directly measurable. Finally, the depth of the pipes leads to strong attenuation of the echoed signal, leading to poor SNR scenarios. In this paper, we propose a detection method: (1) enhancing the signal of interest while reducing the noise and layer contributions, and (2) giving a local estimate of the relative permittivity. We derive an adaptive detector where the signal of interest is parametrised by the wave speed in the ground. For this detector, noise is assumed to follow a Spherically Invariant Random Vector (SIRV) distribution in order to obtain a robust detection. We use robust maximum likelihood-type covariance matrix estimators called M-estimators. To handle the significant amount of data, we consider regularised versions of said estimators. Simulation will allow to estimate the relation PFA-Threshold. Comparison is performed with standard GPR processing methods, showing the aptitude of the method in detecting pipes having low response levels with a reasonable PFA

    TU1208 open database of radargrams. the dataset of the IFSTTAR geophysical test site

    Get PDF
    This paper aims to present a wide dataset of ground penetrating radar (GPR) profiles recorded on a full-size geophysical test site, in Nantes (France). The geophysical test site was conceived to reproduce objects and obstacles commonly met in the urban subsurface, in a completely controlled environment; since the design phase, the site was especially adapted to the context of radar-based techniques. After a detailed description of the test site and its building process, the GPR profiles included in the dataset are presented and commented on. Overall, 67 profiles were recorded along eleven parallel lines crossing the test site in the transverse direction; three pulsed radar systems were used to perform the measurements, manufactured by different producers and equipped with various antennas having central frequencies from 200 MHz to 900 MHz. An archive containing all profiles (raw data) is enclosed to this paper as supplementary material. This dataset is the core part of the Open Database of Radargrams initiative of COST (European Cooperation in Science and Technology) Action TU1208 “Civil engineering applications of Ground Penetrating Radar”. The idea beyond such initiative is to share with the scientific community a selection of interesting and reliable GPR responses, to enable an effective benchmark for direct and inverse electromagnetic approaches, imaging methods and signal processing algorithms. We hope that the dataset presented in this paper will be enriched by the contributions of further users in the future, who will visit the test site and acquire new data with their GPR systems. Moreover, we hope that the dataset will be made alive by researchers who will perform advanced analyses of the profiles, measure the electromagnetic characteristics of the host materials, contribute with synthetic radargrams obtained by modeling the site with electromagnetic simulators, and more in general share results achieved by applying their techniques on the available profiles

    A Realistic FDTD Numerical Modeling Framework of Ground Penetrating Radar for Landmine Detection

    Get PDF
    A three-dimensional (3-D) finite-difference time-domain (FDTD) algorithm is used in order to simulate ground penetrating radar (GPR) for landmine detection. Two bowtie GPR transducers are chosen for the simulations and two widely employed antipersonnel (AP) landmines, namely PMA-1 and PMN are used. The validity of the modeled antennas and landmines is tested through a comparison between numerical and laboratory measurements. The modeled AP landmines are buried in a realistically simulated soil. The geometrical characteristics of soil's inhomogeneity are modeled using fractal correlated noise, which gives rise to Gaussian semivariograms often encountered in the field. Fractals are also employed in order to simulate the roughness of the soil's surface. A frequency-dependent complex electrical permittivity model is used for the dielectric properties of the soil, which relates both the velocity and the attenuation of the electromagnetic waves with the soil's bulk density, sand particles density, clay fraction, sand fraction, and volumetric water fraction. Debye functions are employed to simulate this complex electrical permittivity. Background features like vegetation and water puddles are also included in the models and it is shown that they can affect the performance of GPR at frequencies used for landmine detection (0.5-3 GHz). It is envisaged that this modeling framework would be useful as a testbed for developing novel GPR signal processing and interpretations procedures and some preliminary results from using it in such a way are presented

    UAV-mounted Ground Penetrating Radar: an example for the stability analysis of a mountain rock debris slope

    Get PDF
    This paper describes scientific research conducted to highlight the potential of an integrated GPR-UAV system in engineering-geological applications. The analysis focused on the stability of a natural scree slope in the Germanasca Valley, in the western Italian Alps. As a consequence of its steep shape and the related geological hazard, the study used different remote sensed methodologies such as UAV photogrammetry and geophysics survey by a GPR-drone integrated system. Furthermore, conventional in-situ surveys led to the collection of geological and geomorphological data. The use of the UAV-mounted GPR allowed us to investigate the bedrock depth under the detrital slope deposit, using a non-invasive technique able to conduct surveys on inaccessible areas prone to hazardous conditions for operators. The collected evidence and the results of the analysis highlighted the stability of the slope with Factors of Safety, verified in static conditions (i.e., natural static condition and static condition with snow cover), slightly above the stability limit value of 1. On the contrary, the dynamic loading conditions (i.e., seismic action applied) showed a Factor of Safety below the stability limit value. The UAV-mounted GPR represented an essential contribution to the surveys allowing the definition of the interface debris deposit-bedrock, which are useful to design the slope model and to evaluate the scree slope stability in different conditions

    Reverse-Time Migration for Evaluating the Internal Structure of Tree-Trunks Using Ground-Penetrating Radar

    Get PDF
    The authors would like to express their sincere thanks and gratitude to the following trusts, charities, organizations and individuals for their generosity in supporting this project: Lord Faringdon Charitable Trust, The Schroder Foundation, Cazenove Charitable Trust, Ernest Cook, Sir Henry Keswick, Ian Bond, P. F. Charitable Trust, Prospect Investment Management Limited, The Adrian Swire Charitable Trust, The John Swire 1989 Charitable Trust, The Sackler Trust, The Tanlaw Foundation and The Wyfold Charitable Trust. This paper is dedicated to the memory of Jonathon West, a friend, a colleague, a forester, a conservationist and an environmentalist who died following an accident in the woodland that he loved.Peer reviewedPostprin

    Nonlinear Acoustics and an Inverse Scattering Problem

    Get PDF
    Abstract This Ph.D is concerned with wave propagation problems. The main focus is on nonlinear acoustics, looking at sonic boom propagation in a physically realistic atmosphere, whilst a secondary part will look at the problem of landmine detection and how to improve the target detection rates. The work on nonlinear acoustics emerged as a desire to model the behaviour of the sonic booms formed by supersonic aircraft in the atmosphere to see what environmental impact they would have on people and animals on the ground, in terms of the form of the sound waves once they reach the ground. The work on landmine detection originated from a Knowledge Transfer Partner- ship between the University of East Anglia (UEA) and Cobham Technical Services (CTS) organised through the Knowledge Transfer Network (KTN). This partnership took the form of a six month internship with work undertaken afterwards to publish the �ndings of the internship.

    A comprehensive review of acoustic methods for locating underground pipelines

    Get PDF
    Underground pipelines are vital means of transporting fluid resources like water, oil and gas. The process of locating buried pipelines of interest is an essential prerequisite for pipeline maintenance and repair. Acoustic pipe localization methods, as effective trenchless detection techniques, have been implemented in locating underground utilities and shown to be very promising in plastic pipeline localization. This paper presents a comprehensive review of current acoustic methods and recent advances in the localization of buried pipelines. Investigations are conducted from multiple perspectives including the wave propagation mechanism in buried pipe systems, the principles behind each method along with advantages and limitations, representative acoustic locators in commercial markets, the condition of buried pipes, as well as selection of preferred methods for locating pipelines based on the applicability of existing localization techniques. In addition, the key features of each method are summarized and suggestions for future work are proposed. Acoustic methods for locating underground pipelines have proven to be useful and effective supplements to existing localization techniques. It has been highlighted that the ability of acoustic methods to locate non-metallic objects should be of particular practical value. While this paper focuses on a specific application associated with pipeline localization, many acoustic methods are feasible across a wide range of underground infrastructures
    corecore