859 research outputs found

    High-level Information Fusion for Constrained SMC Methods and Applications

    Get PDF
    Information Fusion is a field that studies processes utilizing data from various input sources, and techniques exploiting this data to produce estimates and knowledge about objects and situations. On the other hand, human computation is a new and evolving research area that uses human intelligence to solve computational problems that are beyond the scope of existing artificial intelligence algorithms. In previous systems, humans' role was mostly restricted for analysing a finished fusion product; however, in the current systems the role of humans is an integral element in a distributed framework, where many tasks can be accomplished by either humans or machines. Moreover, some information can be provided only by humans not machines, because the observational capabilities and opportunities for traditional electronic (hard) sensors are limited. A source-reliability-adaptive distributed non-linear estimation method applicable to a number of distributed state estimation problems is proposed. The proposed method requires only local data exchange among neighbouring sensor nodes. It therefore provides enhanced reliability, scalability, and ease of deployment. In particular, by taking into account the estimation reliability of each sensor node at any point in time, it yields a more robust distributed estimation. To perform the Multi-Model Particle Filtering (MMPF) in an adaptive distributed manner, a Gaussian approximation of the particle cloud obtained at each sensor node, along with a weighted Consensus Propagation (CP)-based distributed data aggregation scheme, are deployed to dynamically re-weight the particle clouds. The filtering is a soft-data-constrained variant of multi-model particle filter, and is capable of processing both soft human-generated data and conventional hard sensory data. If permanent noise occurs in the estimation provided by a sensor node, due to either a faulty sensing device or misleading soft data, the contribution of that node in the weighted consensus process is immediately reduced in order to alleviate its effect on the estimation provided by the neighbouring nodes and the entire network. The robustness of the proposed source-reliability-adaptive distributed estimation method is demonstrated through simulation results for agile target tracking scenarios. Agility here refers to cases in which the observed dynamics of targets deviate from the given probabilistic characterization. Furthermore, the same concept is applied to model soft data constrained multiple-model Probability Hypothesis Density (PHD) filter that can track agile multiple targets with non-linear dynamics, which is a challenging problem. In this case, a Sequential Monte Carlo-Probability Hypothesis Density (SMC-PHD) filter deploys a Random Set (RS) theoretic formulation, along with Sequential Monte Carlo approximation, a variant of Bayes filtering. In general, the performance of Bayesian filtering-based methods can be enhanced by using extra information incorporated as specific constraints into the filtering process. Following the same principle, the new approach uses a constrained variant of the SMC-PHD filter, in which a fuzzy logic approach is used to transform the inherently vague human-generated data into a set of constraints. These constraints are then enforced on the filtering process by applying them as coefficients to the particles' weights. Because the human generated Soft Data (SD), reports on target-agility level, the proposed constrained-filtering approach is capable of dealing with multiple agile target tracking scenarios

    A smart phone based multi-floor indoor positioning system for occupancy detection

    Get PDF
    At present there is a lot of research being done simulating building environment with artificial agents and predicting energy usage and other building performance related factors that helps to promote understanding of more sustainable buildings. To understand these energy demands it is important to understand how the building spaces are being used by individuals i.e. the occupancy pattern of individuals. There are lots of other sensors and methodology being used to understand building occupancy such as PIR sensors, logging information of Wi-Fi APs or ambient sensors such as light or CO2 composition. Indoor positioning can also play an important role in understanding building occupancy pattern. Due to the growing interest and progress being made in this field it is only a matter of time before we start to see extensive application of indoor positioning in our daily lives. This research proposes an indoor positioning system that makes use of the smart phone and its built-in integrated sensors; Wi-Fi, Bluetooth, accelerometer and gyroscope. Since smart phones are easy to carry helps participants carry on with their usual daily work without any distraction but at the same time provide a reliable pedestrian positioning solution for detecting occupancy. The positioning system uses the traditional Wi-Fi and Bluetooth fingerprinting together with pedestrian dead reckoning to develop a cheap but effective multi floor positioning solution. The paper discusses the novel application of indoor positioning technology to solve a real world problem of understanding building occupancy. It discusses the positioning methodology adopted when trying to use existing positioning algorithm and fusing multiple sensor data. It also describes the novel approach taken to identify step like motion in absence of a foot mounted inertial system. Finally the paper discusses results from limited scale trials showing trajectory of motion throughout the Nottingham Geospatial Building covering multiple floors

    Exploiting Heterogeneity in Networks of Aerial and Ground Robotic Agents

    Get PDF
    By taking advantage of complementary communication technologies, distinct sensing functionalities and varied motion dynamics present in a heterogeneous multi-robotic network, it is possible to accomplish a main mission objective by assigning specialized sub-tasks to specific members of a robotic team. An adequate selection of the team members and an effective coordination are some of the challenges to fully exploit the unique capabilities that these types of systems can offer. Motivated by real world applications, we focus on a multi-robotic network consisting off aerial and ground agents which has the potential to provide critical support to humans in complex settings. For instance, aerial robotic relays are capable of transporting small ground mobile sensors to expand the communication range and the situational awareness of first responders in hazardous environments. In the first part of this dissertation, we extend work on manipulation of cable-suspended loads using aerial robots by solving the problem of lifting the cable-suspended load from the ground before proceeding to transport it. Since the suspended load-quadrotor system experiences switching conditions during this critical maneuver, we define a hybrid system and show that it is differentially-flat. This property facilitates the design of a nonlinear controller which tracks a waypoint-based trajectory associated with the discrete states of the hybrid system. In addition, we address the case of unknown payload mass by combining a least-squares estimation method with the designed controller. Second, we focus on the coordination of a heterogeneous team formed by a group of ground mobile sensors and a flying communication router which is deployed to sense areas of interest in a cluttered environment. Using potential field methods, we propose a controller for the coordinated mobility of the team to guarantee inter-robot and obstacle collision avoidance as well as connectivity maintenance among the ground agents while the main goal of sensing is carried out. For the case of the aerial communications relays, we combine antenna diversity with reinforcement learning to dynamically re-locate these relays so that the received signal strength is maintained above a desired threshold. Motivated by the recent interest of combining radio frequency and optical wireless communications, we envision the implementation of an optical link between micro-scale aerial and ground robots. This type of link requires maintaining a sufficient relative transmitter-receiver position for reliable communications. In the third part of this thesis, we tackle this problem. Based on the link model, we define a connectivity cone where a minimum transmission rate is guaranteed. For example, the aerial robot has to track the ground vehicle to stay inside this cone. The control must be robust to noisy measurements. Thus, we use particle filters to obtain a better estimation of the receiver position and we design a control algorithm for the flying robot to enhance the transmission rate. Also, we consider the problem of pairing a ground sensor with an aerial vehicle, both equipped with a hybrid radio-frequency/optical wireless communication system. A challenge is positioning the flying robot within optical range when the sensor location is unknown. Thus, we take advantage of the hybrid communication scheme by developing a control strategy that uses the radio signal to guide the aerial platform to the ground sensor. Once the optical-based signal strength has achieved a certain threshold, the robot hovers within optical range. Finally, we investigate the problem of building an alliance of agents with different skills in order to satisfy the requirements imposed by a given task. We find this alliance, known also as a coalition, by using a bipartite graph in which edges represent the relation between agent capabilities and required resources for task execution. Using this graph, we build a coalition whose total capability resources can satisfy the task resource requirements. Also, we study the heterogeneity of the formed coalition to analyze how it is affected for instance by the amount of capability resources present in the agents

    Deep Learning -Powered Computational Intelligence for Cyber-Attacks Detection and Mitigation in 5G-Enabled Electric Vehicle Charging Station

    Get PDF
    An electric vehicle charging station (EVCS) infrastructure is the backbone of transportation electrification. However, the EVCS has various cyber-attack vulnerabilities in software, hardware, supply chain, and incumbent legacy technologies such as network, communication, and control. Therefore, proactively monitoring, detecting, and defending against these attacks is very important. The state-of-the-art approaches are not agile and intelligent enough to detect, mitigate, and defend against various cyber-physical attacks in the EVCS system. To overcome these limitations, this dissertation primarily designs, develops, implements, and tests the data-driven deep learning-powered computational intelligence to detect and mitigate cyber-physical attacks at the network and physical layers of 5G-enabled EVCS infrastructure. Also, the 5G slicing application to ensure the security and service level agreement (SLA) in the EVCS ecosystem has been studied. Various cyber-attacks such as distributed denial of services (DDoS), False data injection (FDI), advanced persistent threats (APT), and ransomware attacks on the network in a standalone 5G-enabled EVCS environment have been considered. Mathematical models for the mentioned cyber-attacks have been developed. The impact of cyber-attacks on the EVCS operation has been analyzed. Various deep learning-powered intrusion detection systems have been proposed to detect attacks using local electrical and network fingerprints. Furthermore, a novel detection framework has been designed and developed to deal with ransomware threats in high-speed, high-dimensional, multimodal data and assets from eccentric stakeholders of the connected automated vehicle (CAV) ecosystem. To mitigate the adverse effects of cyber-attacks on EVCS controllers, novel data-driven digital clones based on Twin Delayed Deep Deterministic Policy Gradient (TD3) Deep Reinforcement Learning (DRL) has been developed. Also, various Bruteforce, Controller clones-based methods have been devised and tested to aid the defense and mitigation of the impact of the attacks of the EVCS operation. The performance of the proposed mitigation method has been compared with that of a benchmark Deep Deterministic Policy Gradient (DDPG)-based digital clones approach. Simulation results obtained from the Python, Matlab/Simulink, and NetSim software demonstrate that the cyber-attacks are disruptive and detrimental to the operation of EVCS. The proposed detection and mitigation methods are effective and perform better than the conventional and benchmark techniques for the 5G-enabled EVCS

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts
    corecore